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Abstract

The rapid proliferation of large language models has driven
the need for efficient GPU training clusters. However, ensur-
ing high-performance training in these clusters is challenging
due to the complexity of software-hardware interactions and
the frequent occurrence of training anomalies. Since existing
diagnostic tools are narrowly tailored to specific issues, there
are gaps in their ability to address anomalies spanning the
entire training stack. In response, we introduce XPUTIMER, a
real-time diagnostic framework designed for distributed LLM
training at scale. XPUTIMER first integrates a lightweight
tracing daemon to monitor key code segments with minimal
overhead. Additionally, it features a diagnostic engine that
employs novel intra-kernel tracing and holistic aggregated
metrics to efficiently identify and resolve anomalies. Deploy-
ment of XPUTIMER across 6,000 GPUs over eight months
demonstrated significant improvements across the training
stack, validating its effectiveness in real-world scenarios.

1 Introduction

The advent of large language models (LLMs) has revolution-
ized the deep learning training community, driving substan-
tial advancements in artificial intelligence-generated content
(AIGC). Recognizing their transformative potential to en-
hance user experiences, leading corporations are proactively
leveraging LLMs to enhance a wide array of user-oriented
services [1-3]. To meet the computational demands of LLM
training, they construct large-scale training clusters compris-
ing the latest GPUs interconnected via high-bandwidth links.

Figure 1 depicts the general training stack of the large-scale
training cluster in modern corporations. As shown, the opera-
tions team manages low-level resources, and the infrastructure
team delivers training optimizations [4—7], with particular em-
phasis on parallel backbones [8—10]. Supported by these two
teams, multiple algorithm teams focus on adapting LLMs
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Figure 1: The summarized training stack of large-scale train-
ing cluster in Ant Group, highlighting XPUTIMER’s position.

for user-facing applications through various training meth-
ods [11, 12]. Notably, since LLMs do not solve all problems,
the training cluster also supports other deep learning jobs,
such as recommendation models and their specific parallel
backbone, TorchRec [13].

Efficient distributed LLM training of large scale requires
delicate collaboration among the teams across the stack. How-
ever, due to the involvement of thousands of software and
hardware components, training anomalies frequently arise
from various layers. These anomalies include obvious job
failures and non-obvious training slowdowns, which should
be resolved by different teams.

Specifically, the algorithm teams may unintentionally use
incorrect training configurations, leading to training slow-
downs. Meanwhile, the slowdowns may also come from un-
optimized operators, which fall under the responsibility of
the infrastructure team. Moreover, a significant number of
job failures are caused by hardware errors. However, the cur-
rent training stack lacks a dedicated diagnostic framework
to address these anomalies. In its absence, resolving such
issues requires cross-team investigations, resulting in high
communication overhead and low resolution efficiency.

In order to design a deployable diagnostic framework in
the training cluster, we identify three main challenges based
on real-world operational experiences. C-1: Designing a long-
running and lightweight diagnostic framework is challenging.
Addressing non-obvious training slowdowns and low-level
communication errors requires long-term and in-depth mon-



itoring. However, exhaustive tracing mechanisms, such as
PyTorch’s built-in profiler, impose a high runtime memory
overhead, making it unsuitable for meeting long-running re-
quirements. C-2: Detecting and diagnosing the underlying
root cause is challenging. Errors or slowdowns in LLM train-
ing often manifest with similar symptoms, such as process
hangs or decreased training speed, which obscure the actual
problematic machine or code. C-3: Providing a backbone-
extensible diagnostic mechanism is challenging. As shown in
Figure 1, at least three backbones are commonly used across
the LLM community, not to mention those supporting other
deep learning models. Making diagnostic mechanisms exten-
sible to multiple backbones is a significant challenge.

Faced with these challenges, previous efforts [2, 3, 14] tar-
geting distributed LLM training fail to provide comprehen-
sive solutions. This is because these approaches are narrowly
designed for specific problems or scenarios, making them in-
adequate for addressing issues across the software-hardware
stack. For example, FALCON [14] and C4D [3] are capable of
diagnosing low-level network issues. However, our observa-
tions suggest that many slowdowns are caused by upper-level
teams, as shown in Table 1. Likewise, tools such as MegaS-
cale [2] are optimized for pre-training scenarios where teams
collaborate closely and use only the Megatron backbone, lim-
iting their adaptability to the advancing training stack.

To this end, we present XPUTIMER, a real-time and holis-
tic anomaly diagnostic framework designed for efficient dis-
tributed LLM training in GPU clusters of thousand-plus
scale. XPUTIMER consists of two components: a per-training-
process tracing daemon and a diagnostic engine. To collect
runtime data with low overhead (C-1), the tracing daemon
instruments only key code segments rather than blindly trac-
ing all runtime data. Furthermore, as the code segments
are carefully selected and intercepted at the level of both
Python and C++ runtime, the instrumentation provides suffi-
cient critical information for diagnosis (C-2) while remain-
ing backbone-agnostic (C-3). Notably, XPUTIMER is also
hardware-extensible, which could provide seamless support
for other NPUs.

With the real-time data collected by the tracing daemon,
the diagnostic engine detects and diagnoses anomalies, in-
cluding errors and slowdowns(C-2). For error diagnostics,
XPUTIMER introduces a novel intra-kernel tracing mecha-
nism, providing fine-grained diagnostics specifically targeting
communication-related hang errors. Compared to a binary
search using NCCL tests [2, 5], it reduces the complexity of
faulty machine diagnostics from O(logN) to O(1). For slow-
down diagnostics, XPUTIMER proposes holistic aggregated
metrics that encompass not only commonly used macro met-
rics like training throughput but also novel micro metrics, such
as issue latency distribution. With these metrics, XPUTIMER
can diagnose non-obvious slowdowns (e.g., 2.66%) in real-
world workloads.

We extensively evaluated XPUTIMER in terms of its run-

time overhead. XPUTIMER incurs an average latency over-
head of only 0.43% across various LLMs and backbones on
1024 H800 GPUs. Meantime, XPUTIMER only generates just
1.5MB of tracing logs per GPU in a real-world model trained
on 1536 H800 GPUs. In addition, XPUTIMER has been de-
ployed in our training cluster in Ant Group [1], utilizing more
than 6,000 GPUs over the span of 8 months. XPUTIMER
has helped to optimize the whole stack of LLM training, in
terms of model designing, infrastructure optimization, and
cluster operations. We present detailed case studies of diag-
nosed anomalies in §7 and practical insights in §8 derived
from XPUTIMER’s daily deployment.

XPUTIMER has been open-sourced at https:
//github.com/intelligent-machine-learning/
dlrover/tree/master/xpu_timer. XPUTIMER serves as
a core component of DLRover [15], an automated distributed
DL system deployed within Ant Group and supported by the
LF Al & Data Foundation [16].

Our contributions are as follows.

* We highlight the urgent need for a real-time, holistic di-
agnostic framework capable of identifying LLM training
anomalies across the entire training stack.

* We introduce XPUTIMER, a diagnostic framework specifi-
cally designed to tackle the critical challenges of long-term
monitoring, root cause diagnosis, and backbone extensibil-
ity in LLM training diagnostics.

* We deploy XPUTIMER across more than 6,000 GPUs over
an 8-month period, deriving typical case studies and practi-
cal insights from its daily operations.

2 Background and Motivation

In this section, we introduce the training of LLMs within
corporations like Ant Group, and motivate the design of
XPUTIMER for anomaly diagnostics of LLM training.

2.1 Large-Scale LLM Training Stack

The pursuit of more powerful large language models [17-26]
has sparked an intense competition between leading corpora-
tions. Referring to the software-hardware stack for training
LLMs in Figure 1, we delve into how LLMs are reshaping
corresponding teams.

Advancing of LLM applications. With the advancing of
LLM algorithms [18], LLMs excel not just in natural lan-
guage understanding, but also in tackling advanced tasks such
as multimodal tasks [27,28], reasoning tasks [29, 30]. For
instance, customer service teams fine-tune LLMs to develop
chatbots that generate accurate responses to complicated ques-
tions. Similarly, product development teams leverage multi-
modal LLMs to generate comprehensive product descriptions
by integrating diverse inputs, such as product images and tex-
tual data. Consequently, different algorithm teams continue
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Table 1: A comprehensive analysis of common anomalies encountered in Ant Group, annotated with XPUTIMER’s primary

target.
N Anomalies
Type Error Slowdown
Algorithm | Infrastructure | OS | GPU | Network New Unnecessary | Un-optimized | Memory GPU Network
Taxonomy . L . .
bugs bugs errors | errors | errors | algorithms | synchronization kernels management | underlocking | jitter
Startup crash or Runtime hang Slowdown compared to historical Slowdown compared to
Symptom . . . . ..
hang error or crash error jobs and prior training steps prior training steps
Team Algorithm [ Intrastructure Operations Algorithm [ Intrastructure Operations
Attribution Obvious Obscure Obvious
Comment No need to diagnose XPUTIMER’s main target
to innovate LLM models [11,18,23-26,31-36] tailored for 5500 B Megatron

diverse application scenarios.

Advancing of training cluster. Training these LLMs is
computationally intensive, requiring large-scale GPU clusters
of thousand-plus scale [26]. Therefore, leading corporations
are continuously investing in large training clusters powered
by state-of-the-art hardware [37,38]. These clusters not only
expand in scale but also incorporate the latest GPUs [39,40]
with higher computational performance and advanced inter-
connect [41,42]. Efficient operation of these large-scale clus-
ters is critical to the corporations, which requires the opera-
tions team to ensure uninterrupted training performance. Its
responsibilities include job scheduling, driver updates, hard-
ware maintenance, etc.

Advancing of training infrastructure. To enable easy, ef-
ficient, and scalable LLM training within large-scale clusters,
the infrastructure teams build the dedicated software stack.
This stack bridges the gap between algorithm teams and oper-
ations team. Specifically, the infrastructure team focuses on
optimizing the software stack by integrating advanced oper-
ator libraries [4,5,43], training framework [7], and state-of-
the-art model parallel backbones [8,9, 13,44]. By leveraging
this highly optimized training infrastructure, we unlock the
full potential of LLMs, enabling innovation and scalability
across our various services.

2.2 Anomalies of Large-scale LLM Training

Due to the complexity of the entire training stack, various
issues can easily occur. These issues affect both the training
speed of individual training jobs and the overall utilization
of training clusters, collectively termed as anomalies. Table 1
presents a distilled analysis of the common anomalies in our
real-world cluster, broadly categorized into two primary types:
errors and slowdowns. These anomalies often span responsi-
bilities across multiple teams [2,3, 14], making them notori-
ously difficult to diagnose. Thus, resolving these anomalies
demands a diagnostic framework that can effectively identify
their attributions. However, designing such a framework is far
from trivial, posing three key challenges.

The pain of triggering condition. Anomalies in large-scale
LLM training can arise at any stage and time, as shown in the
fourth row of Table 1. First, low-level OS or hardware issues,
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Figure 2: Slowdown of a 1024-GPU training job with Llama2-
70B under various single-GPU underclocking configurations.
Results are evaluated using both Megatron [9] and FSDP [8].

often attributed to the operations team, may occur randomly,
causing runtime hangs or slowdowns. For example, Figure 2
illustrates a significant MFU decline resulting from single-
GPU underclocking. Second, training slowdowns caused by
codebase modifications may also occur randomly. Specifi-
cally, codebase updates on the LLM algorithm typically cause
slowdowns at the start, while modifications related to the
training infrastructure can result in mid-training slowdowns.
A notable example is the slowdown caused by on-demand
garbage collection (GC) [2] of Python runtime, as detailed
in §5.2.2. In such cases, a long-term background diagnostic
mechanism is required to identify these anomalies. However,
given the variety of anomalies across the stack, it is challeng-
ing to design a lightweight diagnostic framework capable of
efficiently collecting key metrics.

The pain of obscured attribution. The attribution of en-
countered anomalies is often obscured by similar symptoms.
For example, many large-scale training jobs suffer from hang
errors, in which the failure of a single training process re-
sults in all participating processes becoming unresponsive.
These errors can arise from specific faulty machines due to
computation operators, GPU communication operators, or
issues within the operating system [2]. Besides, identifying
the root causes of training slowdowns is inherently challeng-
ing. This is because the slowdowns cannot be identified us-
ing a single metric. Specifically, previous researches often
rely on identifying computation operators with low FLOPS
(floating point operations per second) for optimization [4,43].
However, when matrix multiplication overlaps with commu-
nication operators, it is expected to naturally exhibit lower
FLOPS. For example, in a model trained on an A100 GPU,
the FLOPS of the same matrix multiplication kernel can de-
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Figure 3: Architecture overview of XPUTIMER.

crease from 283.9TFLOPS to 155.5TFLOPS. Consequently,
it is challenging for diagnostic frameworks to precisely at-
tribute anomalies and assign them to the appropriate resolu-
tion teams.

The pain of backbone extensibility. With decades of ad-
vancements in model parallelism for large-scale training, a
variety of divergent backbones have been developed to paral-
lelize LLMs. Most LLMs are pre-trained using Megatron [9],
a specialized parallel backbone designed for transformer-
based LLMs. However, researchers continue to investigate
alternative backbones [8, 10, 44] for fine-tuning pre-trained
LLMs on downstream tasks or for training more complex
large models, such as multimodal models. For instance, fully
sharded data parallelism (FSDP) [8] and DeepSpeed [10]
are widely utilized within our cluster for training multimodal
LLMs. These alternatives are often selected to better align
with specific training requirements. However, integrating the
diagnostic framework into divergent parallel backbones re-
mains challenging, as their runtime environments and pro-
gramming interfaces vary significantly.

Existing works have made efforts to build a more robust
training stack for large-scale LLM training [2,3]. They gener-
ally operate under several assumptions: (1) training tasks rely
on limited backbones like Megatron, (2) all teams work in
close collaboration to pre-train a single LLM, or (3) The focus
is on specific anomalies, such as communication-related is-
sues. These assumptions fail to reflect reality and these works
cannot solve the problems across the full stack. To this end, we
propose XPUTIMER, a cluster-wide solution deployed in Ant
Group’s training cluster. It monitors the real-time progress of
LLM training jobs and diagnoses various anomalies precisely.

3 XPUTIMER Design

In this paper, we propose XPUTIMER, a holistic and real-time
diagnostic framework that identifies anomalies in large-scale
training with low overhead and pinpoints their correspond-
ing root causes. XPUTIMER is designed and implemented
following three principles.

* XPUTIMER should be lightweight enough. In this case, it
could run as a long-term diagnostic mechanism without
compromising the training performance at any scale.

* XPUTIMER should cover enough runtime information. In
this case, it could identify the attribution precisely with
detailed analysis when encountering anomalies.

* XPUTIMER should be backbone-agnostic. In this case, it
is sufficiently extensible to function as a cluster-wide solu-
tion for anomaly diagnostics, regardless of the backbones
employed.

Architecture overview. Figure 3 illustrates the architecture
of XPUTIMER, which is deployed in Ant Group’s large-scale
training cluster. XPUTIMER is composed of two components:
the tracing daemon and the diagnostic engine.

By automatically attaching a tracing daemon to each
training process in LLM training jobs, XPUTIMER enables
a framework-agnostic and lightweight tracing mechanism.
Specifically, the tracing daemon instruments only key code
segments at the level of Python and C++ runtime, focusing
on carefully selected Python APIs and GPU kernels. During
instrumentation, events are injected to measure the latencies
of these code segments. This approach draws on our experi-
ence hosting various large-scale LLM training jobs, targeting
critical paths that commonly impact training efficiency.

Then, the timing data collected by the daemons is trans-
mitted to the diagnostic engine for holistic anomaly diagnos-
tics. The engine employs a fast hang-error diagnostic method
and leverages novel aggregated metrics to effectively identify
slowdowns. The aggregated metrics encompass both macro-
level metrics, such as training throughput, and micro-level
metrics, including issue latency distribution of GPU kernels.
Once the diagnostic engine identifies errors and slowdowns,
the issues are routed to attribution teams, enabling swift reso-
lution.

4 Lightweight Selective Tracing

To collect sufficient real-time data for anomaly diagnosis in
the LLM training cluster, XPUTIMER’s tracing daemon offers
backbone-agnostic and lightweight full-spectrum tracing. Its
design focuses on two key aspects: determining what infor-
mation to collect and establishing how to collect it efficiently.

4.1 Key Segment Instrumentation

Since profiling APIs like CUPTI [45] can operate in a back-
ground thread, the runtime data collection overhead primarily
stems from high memory usage rather than interference with
computing resources. For instance, profiling a Llama-70B
model trained on 512 H800 GPUs using PyTorch’s built-in
profiler produces a log file of 5.5GB (in JSON format, com-
pressed to 451MB) for each training step. This substantial
memory overhead renders such arbitrary profiling methods
impractical for continuously collecting real-time data to sup-
port anomaly diagnostics.
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Figure 4: Instrumented key code segments in XPUTIMER.

Therefore, XPUTIMER selectively instruments code seg-
ments of key APIs and kernels to collect real-time information.
This design is based on an insight into LLM training on large-
scale GPUs: LLM training is predominantly dominated by a
limited set of deep learning operators. These operators mainly
include matrix multiplication and cross-GPU communication
operators. Figure 4 presents the specific code segments instru-
mented by XPUTIMER for efficient anomaly diagnostics.

As shown in the figure, the instrumented code segments
can be broadly categorized into two groups. The first category
involves intercepting key API calls, including those related
to Python’s garbage collection (GC), PyTorch’s dataloader,
and GPU synchronization. These APIs are carefully selected
based on empirical insights into performance issues and op-
timization opportunities. These insights are detailed in §5.2,
with corresponding cases discussed in §7.

The second category focuses on intercepting critical GPU
computation and communication kernels executed at the C++
runtime level. These kernels, primarily provided by optimized
libraries [4—-6,46], account for the majority of the workload
during large-scale training. Additionally, there are customized
kernels developed by the infrastructure team.

Notably, the above design enables XPUTIMER to support
backbone-agnostic and extensible tracing capabilities. Extend-
ing tracing capabilities for Python-related APIs is straightfor-
ward, requiring only the configuration of the specific environ-
ment variables in the training scripts, as shown below.

export TRACED_PYTHON_API="torch.cuda@synchronize"

Meanwhile, intercepting C++ kernels necessitates explicit reg-
istration through a C++ interface. This requirement is feasible,
as the infrastructure team takes charge of the development of
both these customized operators and XPUTIMER, ensuring
seamless integration and functionality.

4.2 Timing in the Background

With intercepted Python APIs and GPU kernels, FLARE mea-
sures their elapsed latencies, as shown in Figure 5. Specif-
ically, a dedicated tracing thread runs in the background to
efficiently manage timing data. It employs different timing
mechanisms for Python APIs and GPU kernels.

For synchronous Python API calls, FLARE directly records
their start and end timestamps and forwards them to the timing
manager. For GPU kernels, which execute asynchronously,
FLARE injects CUDA events [47] after an interception to
record execution status. These events are enqueued for fur-
ther processing. The timing manager queries the status of the
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Figure 5: Intercepting and timing the training in the back-
ground.

queued events in the background, avoiding any disruption to
the training thread. Additionally, during GPU kernel intercep-
tion, FLARE extracts input specifications, such as memory
layout, to support subsequent anomaly diagnostics in §5.2.1.

As training progresses, the timing manager proactively
transmits all real-time data to XPUTIMER’s diagnosis en-
gine. By employing key segment instrumentation and running
timing tasks in the background, XPUTIMER minimizes both
computing resource and memory overhead, ensuring efficient
data collection for real-time anomaly diagnostics. A detailed
evaluation of XPUTIMER’s real-time overhead is provided in
§6.1.

S Anomaly Detection and Diagnosis

Using the real-time data collected by the tracing dae-
mon, XPUTIMER’s diagnostic engine identifies and analyzes
anomalies encountered during distributed LLM training. In
this section, we present XPUTIMER’s holistic diagnostic
workflow for addressing two common anomaly symptoms:
errors and slowdowns.

5.1 Fast Runtime Error Diagnosis

As shown in the left of Table 1, errors encountered at the
beginning of a training job are typically caused by bugs in
the training scripts, which can often be addressed easily by
the algorithm teams and infrastructure team. However, diag-
nosing errors that occur during the training progress is more
challenging and critical. Such errors often stem from issues
like operating system crashes, GPU failures, or network dis-
ruptions, which can generally be resolved by isolating the
problematic machines and restarting the training job.

A typical symptom associated with these errors is the hang-
ing of the training job. Training LLMs across numerous GPUs
in a distributed manner inherently relies on the coordination
of training processes. When the aforementioned errors occur,
they rarely affect all training processes simultaneously. In this
context, XPUTIMER focuses on rapidly diagnosing hang er-
rors by identifying faulty machines. Then, XPUTIMER routes
this information to the operations team, enabling the training
job to restart with healthy machines.

Specifically, XPUTIMER’s diagnostic engine first detects
hang errors by examining the status of tracing daemons. The
tracing daemon operates in the background of the training
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Figure 6: Diagnosing hang errors via call stack analysis.

thread and continuously queries events recorded during job
execution. If it fails to confirm the completion of an event
within a predefined timeout interval, it proactively reports a
potential hang error to the diagnostic engine. Similarly, if a
tracing daemon does not transmit any real-time data within the
specified timeout interval, the diagnostic engine also interprets
this as an indication of a hang error.

After hang errors are reported, they are classified as either
communication or non-communication errors. XPUTIMER
diagnoses these errors in two steps: first, a coarse-grained di-
agnosis through call stack analysis; and second, a fine-grained
diagnosis using intra-kernel tracing

Diagnosis using call stack analysis. This diagnosis is
used to identify problematic machines encountering non-
communication errors. Figure 6 illustrates an example of
hang-error diagnosis via call stack analysis. As shown in the
left of Figure 6, when the training process of rank-0 crashes
or is suspended due to a non-communication error, it halts at
a call stack corresponding to a non-communication function.
In contrast, the training processes of other ranks continue
executing correctly and eventually stop at a call stack asso-
ciated with a communication-related function that depends
on coordination with rank-0. In this scenario, the machine
associated with rank-0 is identified as the source of the error.
It should be noted that, although these non-communication
errors may cause direct crashes, the call stack analysis could
also locate the faulty machine.

However, communication hang errors cannot be identified
through call stack analysis. As shown in the right of Figure 6,
the training processes of all ranks terminate at the same call
stack corresponding to a communication function, such as
allreduce or allgather. In this scenario, there are no distinct
differences between ranks based on call stack analysis.

We further investigate the symptoms of communication
hang errors and obtain two observations. Firstly, some com-
munication hang errors generate error logs. For instance, if the
link between RDMA NICs breaks, an error code of 12 is pro-
duced. Secondly, more hang errors result in an endless loop
within the launched communication kernels, ultimately lead-
ing to job termination after a predefined timeout. To identify
the unhealthy machine responsible for such errors, a straight-
forward solution is to perform a binary search by executing
communication tests across all involved GPUs. This approach
has a complexity of O(logN) and requires hours to pinpoint
the faulty machine among thousands of GPUs [14].

Diagnosis using intra-kernel tracing. Faced with this prob-
lem, XPUTIMER introduces a minute-level diagnostic ap-
proach using intra-kernel tracing. This intra-kernel tracing
leverages CUDA-GDB, the debugging tool for CUDA pro-
gramming.

Specifically, XPUTIMER’s diagnostic engine instructs the
tracing daemon to attach the halted training processes with
CUDA-GDB before terminating them. Once attached, the
tracing daemon executes a script capable of automatically ex-
tracting detailed communication statuses to identify unhealthy
machines. Figure 7 depicts an example of diagnosing commu-
nication hang errors in a hanging ring-allreduce kernel.

In the ring-allreduce kernel, each thread block is responsi-
ble for transmitting data between linked adjacent ranks within
the kernel’s constructed ring. The data are split into chunks
and thread blocks of adjacent ranks work together to trans-
mit the chunks step by step. Thus, XPUTIMER could retrieve
the register values corresponding to the loop steps used for
data transmission between linked ranks. Theoretically, the
connection with the minimum step reveals the related GPUs
experiencing errors. This intra-kernel tracing process is per-
formed in parallel across all involved GPUs. As a result, its
complexity is O(1), enabling completion within a few min-
utes.

XPUTIMER then routes the diagnostic information for de-
tected errors to the operations team, assisting with tasks such
as isolating faulty machines and restarting the training job.

5.2 Aggregation for Slowdown Diagnosis

As demonstrated in §2.2, slowdowns can be attributed to
changes across the entire training stack. Meantime, slow-
downs caused by software changes introduced by the algo-
rithm and infrastructure teams are often subtle and challeng-
ing to detect. Identifying these changes typically requires
comparisons across historical training jobs and prior training
steps. In contrast, hardware changes, such as GPU underclock-
ing or network jitter, are more apparent and can be detected
solely through comparisons across training steps.

To holistically identify these anomalies, XPUTIMER aggre-
gates real-time data collected from the tracing daemon into
five primary metrics, shown in Figure 8. These metrics are
based on the consensus that a “healthy” training pipeline
should exhibit a timeline saturated with GPU kernels dedi-
cated to either computation or communication. Computation
kernels should achieve high FLOPS, while communication
kernels are expected to utilize high bandwidth. Any devia-
tions from these characteristics point to idle GPU resources,
signaling potential slowdowns in training jobs. Of the five
metrics, three are commonly used in existing works [2, 14],
while the other two are newly introduced by XPUTIMER.
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Figure 7: An example of diagnosing communication hang
errors in a ring-allreduce kernel using intra-kernel tracing.

5.2.1 Diagnosing Obvious Slowdown

@ Training throughput for detecting slowdown. Training
throughput is the most straightforward metric for detecting
slowdowns. XPUTIMER measures training throughput by
timing the rate at which input data is consumed by the training
pipeline. This is achieved by instrumenting the dataloader
API of Pytorch. As a macro performance metric, training
throughput directly reflects slowdowns in training efficiency
through comparison to historical training jobs and between
training steps of the same job. However, XPUTIMER cannot
diagnose the specific factors contributing to the slowdown. To
address this, XPUTIMER relies on the following four micro
metrics to further investigate the underlying causes.

@ FLOPS for slow critical kernel. XPUTIMER monitors
the FLOPS of instrumented critical computation kernels, lever-
aging timing data and input layout. By comparing the FLOPS
of identical kernels across different ranks, XPUTIMER diag-
noses GPUs that exhibit poor computational performance,
often caused by issues like GPU underclocking. Machines
affected by GPU underclocking are then routed to the opera-
tions team for isolation. Additionally, by analyzing FLOPS,
XPUTIMER identifies un-optimized kernels in training jobs,
particularly those with large input sizes but low FLOPS. These
anomalies are detected without interrupting training jobs
and are subsequently routed to the infrastructure team for
further investigation. Notably, when analyzing FLOPS data,
XPUTIMER accounts for the impact of communication ker-
nels that overlap with computation kernels.This ensures that
computation kernels with falsely low FLOPS are not mistak-
enly flagged.

© Bandwidth for slow connection. XPUTIMER monitors
the bandwidth of communication kernels. A communication
operator requires launching the communication kernels on all
ranks. Since variations in kernel-issue timestamps exist across
different ranks, XPUTIMER calculates the communication
bandwidth by utilizing the start and end timestamps of the
final communication kernels issued across all participating
ranks. The captured communication bandwidth is compared
with offline profiled data. If low-bandwidth communication
is detected, XPUTIMER conducts a communication test using
binary search to pinpoint machines experiencing issues such
as network congestion. These slowdowns are then identified
and routed to the operations team for resolution.

5.2.2 Diagnosing Obscured Slowdown

While the above three metrics ensure that both critical com-
putation and communication GPU kernels operate at high
performance, they do not cover the less critical operations,
such as various CPU operations and element-wise activation
GPU kernels. Meantime, XPUTIMER’s selective key segment
instrumentation also omits the monitoring of these operations.

To diagnose their potential contributions to slowdowns, we
further classify these not-instrumented operations into three
categories: intra-step CPU operations, inter-step CPU opera-
tions, and minority GPU kernels. Intra-step CPU operations
and inter-step CPU operations differ due to their occurrences
within the timeline of training steps. Minority GPU kernels
refer to those GPU kernels that often occupy little GPU com-
putation resources. Specifically, two metrics are introduced
for the diagnostics: issue latency distribution for intra-step
CPU operations and void percentage for inter-step CPU oper-
ations and minority GPU kernels.

O Issue latency distribution for kernel-issue stall. In a
well-optimized parallel backbone, only the necessary intra-
step CPU operations for launching GPU kernels or coordinat-
ing the training processes are expected. However, algorithm
teams may inadvertently introduce unnecessary GPU synchro-
nizations when modifying the LLM model. Meantime, certain
function calls, such as GC [2,9], may be implicitly triggered
by the Python runtime. These intra-step CPU operations can
occur repeatedly during the model’s forward pass, bringing
considerable overhead. In such cases, these operations cause
an anomaly known as a kernel-issue stall, leading to GPU idle
time within the training step.

@-1 in Figure 8 shows the example of Python runtime GC.
In the figure, the Python runtime GC stalls the CPU thread
and causes the lagging of GPU kernels on rank-1. Although
the communication kernel on rank-0 is issued without stalling,
it simply waits for the one on rank-1, ultimately causing the
overall training speed to decline. @-2 in Figure 8 shows an
example of unnecessary GPU synchronization introduced by
the developers from the algorithm teams. As all ranks wait
for the completion of communication kernels, the kernel issue
of follow-up kernels is stalled and not overlapped with GPU
computation. When such unnecessary synchronization oc-
curs repeatedly across the model’s forward pass, it ultimately
results in a slowdown of the training speed.

Originally, detecting these anomalies of kernel-issue stall
requires investigating the aggregated timeline with much hu-
man effort. Faced with this issue, XPUTIMER proposes a
new metric, named issue latency distribution, for diagnosing
this issue without human intervention. Kernel-issue latency is
defined as the time elapsed between the kernel’s issue times-
tamp and the start timestamp of its execution on the GPU.
Based on our observation of anomalies of kernel-issue stall,
the kernel-issue latencies of unhealthy training jobs should
be much shorter than those of a healthy training job.
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Figure 9: Runtime overhead in terms of latency with various models, backbones, and number of GPUs.

By monitoring runtime issue latency distribution, and com-
paring it with the historical data, XPUTIMER could identify
the anomaly of kernel-issue stall. Then, XPUTIMER routes
them to algorithm and infrastructure teams for resolution, as
they are commonly software issues. §6.3 and §7.2 demon-
strate the effectiveness of issue latency distribution in diagnos-
ing kernel-issue stalls, even when the slowdown is minimal.
© Void percentage for other un-covered operations.
While the tracing daemon only instruments the critical oper-
ators, inter-step CPU operations and minority GPU kernels
both manifest as empty time slots in the visualized timeline,
as shown in Figure 8. Consequently, XPUTIMER introduces
a metric, termed the void percentage, to identify slowdowns
caused by these factors.

As for inter-step CPU operations, as depicted by @-2 in
Figure 8, XPUTIMER measures the latency between the last
kernel preceding the dataloader and the first kernel following
the same dataloader. XPUTIMER then computes the void
percentage for inter-step CPU operations using the following
equation:

Vinter = Tinter / Ts‘tep (1
where T;.r represents the latency associated with inter-step
CPU operations, and T, denotes the total latency of the
training step.

As for minority GPU kernels, as shown by ©-1 in Fig-
ure 8, XPUTIMER first automatically detects empty slots
where GPU kernels are launched but remain un-executed.
These empty slots signify that the GPUs are occupied by ker-
nels outside the scope of XPUTIMER’s tracing mechanism.
XPUTIMER subsequently accumulates these slots for each
training step and computes the void percentage using the
following equation:

Vminarity = Tminarity / (]}tep - Tinter) (2)

where Tyinoriry is the latency of all minority GPU kernels.

When the void percentages (Viurer and Vipinoriry) surpass
the predefined thresholds for a specific parallel backbone,
XPUTIMER annotates the training job with potential slow-
downs attributed to inter-step CPU operations or minority
GPU kernels. Then, XPUTIMER notifies the algorithm and
infrastructure team for further investigation.

6 Evaluation

In this section, we present experiments to demonstrate
XPUTIMER’s effectiveness from various perspectives. Specif-
ically, we first evaluate XPUTIMER’s runtime overhead in
terms of latency and memory, showcasing its lightweight
nature for runtime anomaly diagnosis. Then, we assess the
effectiveness of XPUTIMER’s novel diagnostic mechanisms:
intra-kernel tracing for communication hang error diagnosis
and issue distribution metric for kernel-issue stall diagnosis.

6.1 Runtime Overhead

We evaluate XPUTIMER on four parallel backbones: Mega-
tron [9], FSDP [8], DeepSpeed [10], and TorchRec [13].
Among these, Megatron, FSDP, and DeepSpeed are widely
used for LLM training, while TorchRec is employed for train-
ing large recommendation models within Ant Group. Four
models are benchmarked, spanning language, vision, and rec-
ommendation tasks: two large language models (Llama 18B
and 70B), one large vision model (Llama Vision 40B), and
one recommendation model (DLRM 72M).

The latency overhead experiment is conducted on 1,024
H800 GPUs deployed across 128 servers with RoCE con-
nectivity. Figure 9 presents the latency overhead introduced
by XPUTIMER with various models, backbones, and number
of GPUs. As shown, XPUTIMER incurs a latency overhead
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Figure 10: Memory consumption of dumped logs per GPU
per step using the PyTorch profiler and XPUTIMER while
training a Llama-70B model on 16 A100 GPUs.

of 0.43% for three LLM training backbones and 1.02% for
TorchRec.

The memory overhead experiment is conducted on two
setups, which are 16 A100 GPUs on 2 nodes and 1536 H800
GPUs on 192 nodes. We compare XPUTIMER with Torch
Full, Torch w/o Stack, Torch w/o Layout&Stack, and
XPUTIMER. Torch w/o Stack refers to using the PyTorch
builtin profiler with stack tracing disabled, while Torch w/o
Layouté&Stack further disables matrix layout tracing.

Figure 10 shows the memory overhead results on 16 A100
GPUs. XPUTIMER consumes only 0.39%, 1.76%, and 2.48%
of memory overhead for the respective configurations of Py-
Torch profiler. Specifically, XPUTIMER generates a maximum
of 0.78MB of tracing logs per GPU. Besides, in a real-world
Llama-20B training job on 1536 H800 GPUs, XPUTIMER
generated only a 1.5MB tracing log per GPU. TorchRec is
omitted from this experiment, as monitoring a recommenda-
tion model generates minimal logs.

From the above results, we can conclude that, regardless of
the GPU scale, parallel backbone, parallel strategy, or model
type used, XPUTIMER consistently maintains an extremely
low runtime overhead in terms of both latency and mem-
ory. The lightweight selective tracing facilitates XPUTIMER’s
deployment within our large training cluster, serving as a
diagnostic framework for diverse training jobs.

6.2 Effectiveness of Intra-kernel Tracing

We evaluate the intra-kernel tracing mechanism on 16 A100
GPUs across two servers with RoCE connectivity. Given that
most communication kernels are ring-based, this experiment
focuses on evaluating ring-allreduce. Specifically, we cus-
tomize the training script composed solely of communication
kernels, with one GPU intentionally suspended to simulate a
hang error caused by communication issues.

Figure 11 illustrates the pinpointing latencies for intra- and
inter-server communication. The figure presents the latency
results for three communication protocols [48] and cross-node
configurations. As shown, XPUTIMER requires 29.4~309.2s
to detect erroneous GPUs across different scenarios. Among
the protocols, XPUTIMER performs best when the SIMPLE
protocol is used for communication. This is because, with the
SIMPLE protocol, XPUTIMER only needs to scan the first
thread of each thread block to check the steps, whereas the
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Simple LL LL128
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Figure 11: Latency for pinpointing the erroneous GPUs caus-
ing a hang error in ring-allreduce with different protocols.

other two protocols require scanning the entire thread block.

When comparing intra-server and inter-server results,
XPUTIMER performs better when the ring-allreduce opera-
tion spans multiple servers. This is because intra-server GPUs
are connected via NVLink, whereas inter-server GPUs com-
municate through NICs. Communication kernels launched
over NICs involve fewer thread blocks, as NICs have fewer
internal links compared to NVLink. As a result, XPUTIMER
scans fewer thread blocks for error diagnosis in inter-server
scenarios.

In summary, the intra-kernel tracing mechanism can de-
tect erroneous GPUs in a maximum of 309.2s. Notably, as
the complexity of intra-kernel tracing is O(1), these results
remain consistent regardless of scale.

6.3 Effectiveness of Issue Latency Distribution

In this experiment, we evaluate the issue latency distribu-
tion using Llama-20B running on 256 H800 GPUs across
32 servers connected via RoCE. Figure 12 illustrates the is-
sue latency distribution for all communication kernels in the
Unhealthy-GC, Unhealthy-Sync, and Healthy scenarios.
In the Unhealthy-GC scenario, GC is implicitly triggered
by the Python runtime. In the Unhealthy-Sync scenario,
an unintended GPU synchronization call is added within the
transformer block, leading to repetitive GPU synchronizations
during the model’s forward pass. In the Healthy scenario,
GC is efficiently managed by the parallel backbone, and no
unnecessary synchronizations are introduced.

As shown in the figure, the issue latency distribution pat-
terns align with our claim in §5.2.2. The issue latency CDF
of a healthy LLM training job increases linearly, whereas the
issue latency CDFs for Unhealthy-GC and Unhealthy-Sync
exhibit a much steeper rise. This is because the issue latencies
of different ranks in the healthy scenario are solely influenced
by the collective communication operator, resulting in a uni-
form distribution. In contrast, in the cases of Unhealthy-GC
and Unhealthy-Sync, while some ranks are affected, their
latencies become very short due to the delayed start of the
issue time.

Since both GC and GPU synchronizations span the en-
tire model forward pass, all communication kernels are af-
fected, as illustrated in Figure 12. Furthermore, each training
process triggers GC independently, and the GC operation
for a single process is more time-consuming than GPU syn-
chronization. Consequently, the issue latency distribution for
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Figure 12: Issue distribution across all communication kernels for a Llama-20B model trained with Megatron and 256 GPUs,
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Table 2: Typical errors detected by XPUTIMER.

Taxonomy Details Numbers | Mechanism
oS Checkpoint storage 10
errors OS crash 1 Stack
GPU GPU Driver 26 analysis
Faulty GPU (Unknown) 37
errors
~Network | NCCL hang 36 Intra-kemel
errors RoCE issue 17 tracing

Unhealthy-GC is worse than that of Unhealthy-Sync.

7 Deployment & Case Studies

In this section, we further demonstrate XPUTIMER’s effec-
tiveness in diagnosing LLM training anomalies through sta-
tistical analysis of its cluster-wide deployment and detailed
case studies of various anomalies.

7.1 Cluster-wide Deployment

XPUTIMER has been deployed within a training cluster with
6,000 GPUs for over 8 months. During this period, it is re-
sponsible for monitoring, detecting, and diagnosing training
jobs for various deep learning models, especially large-scale
distributed LLM training. Its diagnostic capabilities enable
the algorithm teams, infrastructure team, and operations team
to seamlessly enhance model training efficiency and improve
training cluster utilization.

Table 2 presents a subset of error anomalies detected by
XPUTIMER. As shown in the table, XPUTIMER effectively
identifies OS- and hardware-related anomalies, including
crashes, hangs, and slowdowns caused by such issues. While
these issues are typically conspicuous and could be detected
by existing methods based on noticeable training interrup-
tions [9, 14], XPUTIMER’s novelty lies in providing richer
error information through techniques like intra-kernel trac-
ing. Such runtime information helps ease and accelerate the
attribution process of low-level issues for operations teams.

Moreover, the true value of XPUTIMER lies in its ability to
detect anomalies caused by both algorithm teams and the in-
frastructure team. Table 3 summarizes slowdowns diagnosed
by XPUTIMER using its aggregated metrics. In the table,
anomalies newly identified by XPUTIMER, as compared to

10

Table 3: Slowdowns diagnosed by XPUTIMER, with ‘“Details”
showing training job specifics and associated MFU decline.

Metric Attribution Details
FLOPS GPU underclocking 480 GPUs, Llama-65B, 14% |
Backbone migration| 1856 GPUs, Llama-80B, 33.3% |
Network jitter With | ¢ 3p1¢ | Jama-65B, 10~20% |
Bandwidth increased CRC
andw Down of 32GPUs, Llama-10B, 80% |
GDR module 128GPUs, Llama-10B, 62.5% |,

Host-side hugepage ..
caused high sysload 128GPUs, LlamaVision-11B, 20% |
2048GPUs, Llama-80B, 10% |

280GPUs, LlamaVision-11B, 60% |

Python GC
Issue latency

256GPUs, Llama-20B, 2.66% |

distribution Unnecessary
GPU Sync
Package chcecking (280GPUs, LlamaVision-20B, 30% |
: Frequent GPU |14 0) o puss. 1lama-176B, 19% |
Void mem. management
percentage Dataloader 512GPUs, Llama-80B, 41% |

prior works [2], are highlighted in bold. The following sub-
sections provide a detailed discussion of typical cases.

7.2 Case-1: Towards Stall-free Kernel Issuing

Kernel-issue stalls are among the most frequent causes of
slowdowns encountered in a training cluster not dedicated ex-
clusively to a single pre-training task. While Python runtime
GC is well-known and now carefully managed by the parallel
backbone in most cases, most encountered kernel-issue stalls
arise from code introduced by algorithm teams to enhance
LLM performance in downstream tasks.

A typical case encountered by XPUTIMER is a training
job of Llama20B running on 256 H800 GPUs. The devel-
oper from the algorithm team mistakenly enables the timer
provided by Megatron for performance profiling of several
key code segments. This profiling incurs kernel-issue stalls
because it requires GPU synchronizations to obtain accurate
timestamps.

Although no significant slowdown was observed in training
throughput, XPUTIMER successfully detects the abnormal
issue latency distribution. After removing these unnecessary
synchronizations by disabling the timer, the MFU of the train-
ing job improves from 41.4% to 42.5%, representing a 2.66%
increase. While this slowdown is much smaller than that
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ing Llama-80B from FSDP to Megatron.

caused by Python runtime GC (typically exceeding 10%),
XPUTIMER could still uncover it, ensuring the training job’s
performance.

In addition to the above two cases, XPUTIMER also detects
other kernel-issue stalls, such as unnecessary package version
checking, frequent CUDA memory management within the
PyTorch runtime, and others. These cases are listed in Table 3.

7.3 Case-2: Migration between Backbones

Different parallel backbones are suited to varying hardware
conditions. While FSDP typically delivers ease of use and
good efficiency on fewer than 1000 GPUs or relatively short
sequences for LLMs (e.g., 4k), Megatron demonstrates supe-
rior scalability as the scale increases beyond 1000 GPUs or
when handling extremely large sequences (e.g., 64k). In this
context, algorithm teams may migrate an LLM between back-
bones to meet their specific demands. However, this migration
process can potentially introduce anomalies.

A typical scenario encountered by XPUTIMER is an anoma-
lous MFU decline when migrating a Llama-like 80B model
from FSDP (1888 H800 GPUs) to Megatron (1586 H800
GPUs with a data-parallel degree of 58, pipeline-parallel de-
gree of 8, and tensor-parallel degree of 4). This anomaly
specifically stems from a matrix layout change. The weight
dimension of the LLM’s FFN layer, initially configured
as [8192 x 33936] during training on FSDP, changes to
[8192 x 8484] after migration to Megatron with a tensor par-
allelism degree of 4.

After migration to Megatron, this operator exhibits signifi-
cantly lower FLOPS due to smaller batch size and the unfavor-
able 8484 layout for Tensor Cores, which require alignment to
128 bytes. In contrast, the dimension 33936 and larger batch
size on FSDP meet this alignment requirement. Following
XPUTIMER’s diagnosis, our infrastructure team customizes
a kernel that pads 8484 to 8512. Figure 13 further illustrates
the FLOPS of the same operator before migration, after mi-
gration, and post-optimization guided by XPUTIMER. As
shown, the operator experiences a 65.3% decline in FLOPS
after migration, and XPUTIMER successfully facilitates the
performance diagnosis. From the perspective of the training
job, the overall MFU increases from 27% to 36%, reflecting
a 33.3% improvement.

11

Table 4: Changes in detected V,yinoriry and corresponding
TFLOPS when different minority kernels are not optimized.

Healthy | -PE | -PE-ACT | -PE-ACT-NORM
Vinority 9% 14% 15% 28%
N. TFLOPS 1 0.95 0.93 0.83

7.4 Case-3: New Algorithms and Data

Algorithm teams continually strive to enhance model perfor-
mance by modifying the LLM architecture and incorporating
new training data. However, this process often introduces
anomalies.

Firstly, algorithm teams generally modify position embed-
dings (PE), activation functions (ACT), and normalization
operators (NORM), while preserving the core structure of
the transformer. Table 4 illustrates the detected changes in
Vininoriry caused by these operator modifications during daily
deployments. In this table, the parallel backbone is Megatron.
The “Healthy” column represents a fully optimized training
job, whereas the “-PE” column reflects changes in modify-
ing the position embeddings. Similarly, the other columns
correspond to modifications of the respective operators.

Since these modified operators are less critical and not in-
strumented by XPUTIMER, Vyinoriry increases proportionally
with their computational complexity. Our infrastructure team
leverages XPUTIMER’s detection of high V,inriry to develop
targeted kernel implementations. Once optimized through
techniques like kernel fusion, the job’s Viinoriry returns to
a normal level. In this process, XPUTIMER eliminates the
need for manual identification, thereby accelerating anomaly
diagnosis.

Secondly, newly filtered data is continuously incorporated
into the LLLM for training. XPUTIMER has successfully di-
agnosed anomalies arising from variance in the training data.
In one specific case, the algorithm team attempts to train a
Llama-80B model with data containing a sequence length of
64k, while the original training script is designed for sequence
lengths of 4k. XPUTIMER identifies a significant anomalous
decline in MFU (41%) on 512 H800 GPUs, accompanied by
an increase in Ve,

After routing this anomaly to the infrastructure team, the
root cause was identified in the dataloader, specifically in
the attention mask generation process. When the sequence
length is short, the latency incurred by mask generation is
minimal. However, the complexity of mask generation scales
as O(L?), where L represents the sequence length. As a result,
the dataloader experiences extremely poor performance when
the sequence length increases to 64k.

8 Lessons Learned and Future Work

In this section, we share the practical lessons learned during
the development and deployment of XPUTIMER, along with
directions for future work.



8.1 Practical Usages

Algorithm teams. Algorithm teams are dedicated to con-
tinuously integrating new innovations into the existing LLM
training pipeline. They employ XPUTIMER to verify that sub-
mitted training jobs meet the expected training throughput.
By leveraging XPUTIMER, algorithm teams can identify and
resolve slowdown anomalies caused by elementary inefficient
code, without requiring intervention from the infrastructure
team.

Infrastructure team. The infrastructure team is committed
to optimizing GPU kernel libraries, training frameworks, and
parallel backbones. With XPUTIMER’s lightweight logging
system, the infrastructure team can gather sufficient runtime
data to analyze submitted jobs and identify new optimization
opportunities. Anomalies caused by codebase modifications
that cannot be resolved by the algorithm team are ultimately
routed to the infrastructure team.

Operations team. The operations team is responsible for
maintaining the stability of all low-level resources. When a
training job is terminated due to low-level issues, the opera-
tions team queries intra-kernel tracing information provided
by XPUTIMER. This allows them to identify the faulty ma-
chine without requiring a fully comprehensive test.

8.2 Holistic Diagnostics

The training stack for advancing AIGC is inherently complex.
Previously, in the absence of a holistic diagnostic framework
like XPUTIMER, significant effort was wasted on communi-
cation among algorithm, infrastructure, and operations teams.
Algorithm teams often required collaboration with the in-
frastructure team to address slowdowns caused by minor but
inefficient codebase modifications. When low-level issues
arose, the operations team had to conduct extensive low-level
benchmarking tests to identify the problem, resulting in delays
to the algorithm teams’ training jobs. The holistic diagnostics
provided by XPUTIMER streamline this process by pinpoint-
ing elementary inefficiencies in the codebase for algorithm
teams, only routing complex anomalies with aggregated met-
rics to the infrastructure team, and supplying the operations
team with valuable runtime low-level data.

8.3 Using Historical Data

Historical traces are essential for enhancing the effectiveness
of anomaly detection. While runtime data is crucial, it is
insufficient on its own for accurately identifying anomalies.
XPUTIMER detects various issues by comparing real-time
data against historical data. For instance, when using issue
latency distributions to detect kernel-issue stalls, XPUTIMER
relies on historical data from specific backbones operating on
specific hardware. By collecting historical data from healthy
jobs, XPUTIMER can efficiently identify anomalies in newly
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submitted LLM training jobs. In the future, as deployment
data grows, we aim to release relevant datasets to further
streamline the diagnosis of LLM training.

8.4 Hardware Extensibility

Currently, XPUTIMER does support the extensibility of ad-
ditional hardware, particularly NPUs dedicated to DL train-
ing. Its tracing mechanism is not only backbone-agnostic but
also designed for seamless extension to other NPUs. Since
XPUTIMER directly instruments key code segments at the
Python and C++ runtime levels, extending it is straightfor-
ward, provided the relevant computation kernel is supplied by
the NPU vendor.

8.5 Diagnosing Communication Slowdown

Diagnosing communication slowdowns caused by issues
such as network jitter is challenging, as runtime tracing can
introduce significant overhead or lack accuracy. Currently,
XPUTIMER utilizes a method similar to MegaScale [2], lever-
aging NCCL tests to identify faulty machines or switches. We
are in the process of developing an eBPF-based [49] tracing
tool to accurately monitor bandwidth across RDMA NICs
with minimal overhead. In the future, XPUTIMER will be
further enhanced with these fine-grained tracing capabilities.

9 Related Work

Anomaly Diagnosis in Distributed Training. Anomaly di-
agnosis in large-scale distributed deep learning training tasks
has consistently been a hot research focus [2, 3, 14, 50-52].
Megascale [2] only focuses on LLLM training tasks based
on Megatron-LM. It identifies network-related hardware and
software issues in the training process by conducting intra-
host network tests and NCCL tests. Falcon [14] detects pro-
longed iterations using the Bayesian Online Change-Point
Detection algorithm. C4D [3] modifies the Collective Com-
munication Library to collect message statistics, such as
sizes and durations of transfers, to identify the performance
bottlenecks. However, these approaches primarily address
communication-related performance issues and fail to en-
compass the anomalies across the LLM training stack. Addi-
tionally, they depend heavily on a single parallel backbone,
Megatron, which limits their generality. Meanwhile, many
researches [50-52] focus on task recovery. These approaches
are orthogonal to XPUTIMER, which could seamlessly inte-
grate with XPUTIMER.

Anomaly Diagnosis in Large-scale Datacenter. Many
research efforts [53-57] focus on anomaly diagnosis at dif-
ferent levels of the datacenter, including runtime, network,
and storage. SCALENE [53] introduces an algorithm to assist
Python programmers in optimizing their code by distinguish-
ing between inefficient Python execution and efficient native



execution. AND [54] is a unified application-network diagnos-
ing system that leverages a single metric, TCP retransmissions
(TCP retx), to identify network anomalies in cloud-native sce-
narios. AAsclepius [55] proposes a PathDebugging technique
to trace fault linkages between the middle network and au-
tonomous systems. Researchers [56] from Alibaba analyze
four key factors that impact SSD failure correlations: drive
models, lithography, age, and capacity. As these works ad-
dress anomaly problems in specific scenarios, they are unable
to resolve the challenges targeted by XPUTIMER in large-
scale distributed LLM training.

10 Conclusion

In this paper, we introduce XPUTIMER, a real-time diagnos-
tic framework for LLM training. By addressing critical chal-
lenges such as lightweight long-term monitoring, root cause
detection, and backbone extensibility, XPUTIMER provides a
comprehensive solution for anomaly diagnostics across large-
scale GPU clusters. With its novel intra-kernel tracing mech-
anism and holistic aggregated metrics, XPUTIMER not only
reduces diagnostic complexity but also improves the detection
and resolution of non-obvious slowdowns and errors. Its de-
ployment in real-world training clusters, spanning over 6,000
GPUs, demonstrates its efficacy in diagnosing distributed
LLM training. Furthermore, XPUTIMER is open-sourced to
encourage broader adoption.
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