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Abstract
Large Language Model (LLM) applications have emerged
as a prominent use case for Function-as-a-Service (FaaS)
due to their high computational demands and sporadic in-
vocation patterns. However, serving LLM functions within
FaaS frameworks faces significant GPU-side cold start. A
fundamental approach involves leveraging a template with
function state saved on GPUs to bypass the cold start for new
invocations. Yet, this approach struggles with the high GPU
footprint, dynamic initialization behaviors, and lazy GPU ker-
nel loading inherent in LLM functions, primarily due to a
lack of insight into the underlying execution details. In this
paper, we introduce TIDAL, an optimized FaaS framework
for LLM applications that achieves fast startups by tracing
fine-grained execution paths. By utilizing the traced execu-
tion details, TIDAL generates adaptive function templates,
effectively breaking startup barriers for LLM functions. Ex-
tensive evaluations demonstrate that TIDAL reduces cold start
latency by 1.79×~2.11× and improves the 95%-ile time-to-
first-token by 76.0%, surpassing state-of-the-art methods.

1 Introduction

Function-as-a-Service (FaaS) [1] has emerged as the lead-
ing serverless paradigm in cloud platforms [2, 3]. By adopt-
ing functions as the basic unit of scheduling, FaaS provides
distinct benefits for both application developers and cloud
providers. FaaS allows developers to focus on core function
logic without caring infrastructure management. Additionally,
its pay-as-you-go model lowers costs, particularly for func-
tions with low invocation frequency [4]. For cloud providers,
FaaS enhances resource utilization by enabling more effective
resource management, ensuring efficiency and scalability.

Large language model (LLM) applications are emerging as
a prominent use case for FaaS. These applications require both
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Figure 1: Cold-start invocation using Llama2-13B [11] on an
Nvidia RTX A6000. The input length is 2k.

rapid innovation and significant GPU resources but may en-
counter low invocation frequencies, particularly during early
deployment phases. The high computational demands and un-
predictable workloads make FaaS an ideal solution for hosting
LLM functions. Recognizing these benefits, many companies,
such as Hugging Face and RunPod [5–7], now offer FaaS
services designed for LLM applications.

We observe that the inherent long cold startup problem in
FaaS becomes much worse, exacerbated by the complexity
of LLM execution environments. From memory stack aspect,
executing LLMs requires managing a large footprint across a
three-tier memory hierarchy: storage, host memory, and GPU
memory. From application aspect, different from traditional
FaaS applications, costly dynamic model initialization is often
required. For instance, multilingual functions [8] adapt to in-
dividual requests by dynamically attaching language-specific
LoRA adapters [9] to a shared base LLM [10–12]. The dy-
namics makes many cache-based optimizations inefficient.
From context preparing aspect, inference on GPUs necessi-
tates preparing the execution environment, including creating
CUDA contexts [13] and other setup operations.

Figure 1 illustrates the cold start process of an LLM func-
tion: initializing the model on the host (loading the checkpoint
into host memory), transferring the model from the host to
the GPU, and performing the inference on GPU. The first two
steps are the primary contributors to cold start. Recent stud-
ies [14, 15] have proposed techniques to mitigate the startup
latency associated with host-side initialization. In the upper
half of Figure 1, state-of-the-art frameworks [14] overlap
storage-to-host model loading with host-to-GPU data transfer
and cache the models in a host-side memory pool. However,
even if the storage-to-host transfer (the first step) is optimized
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to negligible level [14], the time-to-first-token (TTFT) re-
mains 2.74× greater than inference latency, primarily due to
host-to-GPU data transfer (the second step).

To entirely eliminate cold start, a fundamental solution is
template-start [16,17]. A template consists of a pre-initialized
function state cached in memory. Template-start allows new
invocations to launch directly from the template, bypassing
all initialization steps. To prevent data conflicts, the template
must be request-agnostic, and a copy-on-write mechanism is
critical for safe template sharing. As shown in the bottom right
of Figure 1, by saving the initialized LLM in GPU memory as
a template, we could directly launch a new invocation, entirely
excluding the cold-start latency. Unfortunately, we find that
template-start, which blindly reuses an existing function state
without understanding the execution details across function
invocation, is generally ineffective for LLM functions.

Firstly, template-start struggles to reconcile the need for
fast startup with high template density, due to the substantial
footprint of LLMs. E.g., an Nvidia RTX A6000 GPU (48
GB) can accommodate only one template for the function in
Figure 1. With such a low template density, template-start is
impractical within a FaaS framework, where multi-tenancy
is essential. Based on the fact that model weights in the tem-
plate are accessed sequentially (kernel by kernel) during infer-
ence [18], we identify the opportunity to overlap host-to-GPU
data transfers with inference. Such overlap potentially reduces
the template footprint and increases template density with-
out impacting latency. However, such overlapping cannot be
achieved without knowing the order of weights are accessed
in a model during inference.

Secondly, template-start fails to reduce cold start latency
for functions with dynamic initialization. As previously dis-
cussed, LoRA adapters, which are dynamically attached to
the base model, are request-specific [19–21]. Although these
adapters account for less than 1% of the base model, the initial-
ization of such LLM functions does not meet the criteria for
being saved in the template. Ideally, it is possible to mitigate
cold start for dynamic LLM functions, by creating a template
with the most reusable initialization. Such design currently
cannot be achieved, lacking a mechanism that identifies and
excludes dynamically initialized components.

Thirdly, starting new invocations from a template with
model initialized still suffers from cold start overhead. Our
study in §2.2 also reveals that the inference time during a cold
start is still higher than that within a fully warm function state,
where the model has been loaded and executed once. The
key factor is that the code segments for kernel execution are
lazily loaded onto GPU during the first inference [22]. Such
overhead can be eliminated if these code segments could
be proactively loaded when pre-warming processes for new
invocations. However, without prior knowledge of the specific
GPU kernels launched during inference, such proactive code
loading cannot be achieved.

To this end, we introduce TIDAL, an efficient FaaS frame-

work tailored for LLM applications with fast cold start. The
key insight of TIDAL is that a detailed understanding of the
fine-grained execution paths of an LLM function—spanning
initialization and inference—unlocks new opportunities to
optimize cold start. Unfortunately, the fine-grained execution
paths required for startup optimizations are implicit within
each invocation and cannot be manually exposed by function
developers. TIDAL integrates a lightweight tracing mecha-
nism to automatically extract these fine-grained execution
paths at runtime. Using adaptive function templates gener-
ated from traced execution paths, TIDAL tackles the cold-start
problem for LLM functions by two optimizations: proactive
code segment loading and adaptive state forking. While proac-
tive code segment loading ensures a fully pre-warmed GPU
context, adaptive state forking efficiently reuses static compo-
nents and overlaps model loading with inference.

We implement TIDAL by extending PyTorch to serve as
the runtime for LLM functions. TIDAL transparently supports
LLM functions wrapped with a wide range of LLM models.
We conducted extensive evaluations of TIDAL using repre-
sentative LLMs [10–12, 23–25] of various sizes, both with
and without LoRA enabled. Experimental results show that
TIDAL achieves 1.79×~2.11× speedup in cold start latency
compared to state-of-the-art solutions. Furthermore, under
real-world workloads, TIDAL reduces the 95%-ile of TTFT
by 76.0%. The key contributions are as follows:
• We present a detailed analysis of the cold-start overhead

of LLM functions on GPUs and highlight the obstacles of
directly applying template-start for optimization.

• We identify that the primary challenge in optimizing the
cold start of LLM functions lies in the unawareness of the
fine-grained execution paths underlying invocations.

• We build up a lightweight, weight-centric tracing mecha-
nism to automatically expose the fine-grained execution
paths without manual effort.

• We consolidate optimizations based on the traced fine-
grained execution paths to minimize the startup latency
of cold LLM function invocations.

2 Background and Motivation

2.1 LLMs and Function-as-a-Service

Function-as-a-Service (FaaS) products [5–7] are popular
among cloud vendors to support large language model (LLM)
applications. These frameworks provide scalable and cost-
efficient solutions, allowing developers to invoke custom
LLM functions tailored to specific use cases.

Under this context, application developers encapsulate the
LLM inference logic within function code. Figure 2 illus-
trates such an example written in Python, adhering to the cod-
ing logic employed in several state-of-the-art research works
and industry products [5–7, 14, 26]. The code is uploaded

2



to the framework, which automatically invokes the function
instance in response to triggered events (e.g., a RESTful http
request). Once the function is triggered, the framework loads
the function code, initializes the corresponding LLM models
on GPUs, and executes the function handler for inference. For
high request rates, the initialized model is reused to efficiently
process subsequent requests . However, at low request rates,
function is started from scratch, requiring time-consuming
model initialization for each request This results in the com-
mon issue known as cold startup in serverless computing.

2.2 Cold Start of LLM Functions

Researchers have recently focused on alleviating the cold start
issues of functions on GPU [14,26–28]. Figure 3 presents the
lifecycle of a cold-start LLM invocation on GPU, utilized to
better demonstrate these works and define the target scope
of TIDAL. In the figure, we omit the CPU-side initialization
processes, such as container creation, as these have been ex-
tensively explored in CPU-only studies [17, 29–31].

Warming of model weight on host. Stage-1 in Figure 3
primarily involves loading model checkpoints into host mem-
ory. State-of-the-art solutions [14] tailored for LLMs utilize a
pinned host memory pool to efficiently load and cache model
weights from local storage. With host memory offering sig-
nificantly greater capacity than GPU memory (10.7× in our
testbed), advanced pre-loading policies [26,27,32] can further
reduce the impact of Stage-1 to a negligible level. Throughout
this paper, unless otherwise indicated, we assume that model
weights are pre-cached in host memory by existing solutions.

Warming of CUDA context on GPU. Stage-2 in Figure 3
involves the creation of the CUDA context, which initial-
izes essential data structures for GPU-enabled processes.
While this stage is notoriously time-consuming, it is function-
agnostic, meaning it can be pre-warmed independently of the
function invocations. As a result, pre-warming the CUDA
context with a process pool allows it to be excluded entirely
from the cold start of LLM function invocations.

1 # ---initialization start---
2 import torch
3 # load checkpoints to host memory
4 llama_weight= torch.load("llama2-13b")
5 # creat CUDA context
6 torch.cuda.set_device("cuda:0")
7 # init model and load it to cuda
8 llama = Llama()
9 llama.load_state_dict(llama_weight)

10 llama = llama.cuda()
11 # ---initialization end---
12

13 def handler(event, context):
14 # model inference on GPU
15 output = llama(event["input"])
16 return {"output": output}

Figure 2: An example of an LLM function encapsulating
LLaMA 2-13B with two parts: initialization and handler.
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Figure 3: Lifecycle of a cold-start invocation using Llama2-
13B and highlighting the optimizing targets of TIDAL.
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Figure 4: Breakdown of GPU cold start and fully-warmed
invocation latencies for 2 Llama-family models [10, 11] with
varied inputs. For instance, “13B-512” denotes a Llama with
13 billions parameters evaluated using an input length of 512.

Warming of function state on GPU. We collectively term
Stages-3&4 in Figure 3 as the “GPU cold start”, that remains
largely unexplored. It involves loading the initialized model
into GPU memory and launching GPU kernels for the first-
time execution. To dissect the GPU cold start, we conduct
experiments with representative LLMs [10, 11] on an Nvidia
RTX A6000 GPU. In the experiment, we change the length
of input sequences from 512 to 4k for LLMs for simulating
various tasks [33, 34]. Figure 4 illustrates the latency of a
cold-start invocation compared to that of an invocation within
a fully warmed function state.

Observed from Figure 4, Stage-3 requires 2.11× more time
than Stage-4 on average. The long time of Stage-3 is dom-
inated by GPU-side modeling loading through PCIe. The
issue worsens with shorter input sequences and larger model
sizes. Moreover, the latency of Stage-4 exceeds that of a fully
warmed invocation by an average of 76.1%, equivalent to
179 ms in absolute terms, primarily due to the loading of
kernel-related code segments into the GPU during the first-
time kernel execution. The long GPU cold start emphasizes
the critical need for optimization.

Existing works [26] have tried to optimize Stage-3 by em-
ploying pre-warming policy. The pre-warming method is in-
herently load-dependent, failing to fundamentally address the
cold start caused by model loading over PCIe. Moreover, to
the best of our knowledge, we find no work on eliminating the
overhead in Stage-4. Consequently, this paper focuses on sys-
tematically optimizing the warming of GPU function state to
mitigate the cold start overhead in LLM function invocation.

2.3 Limitations of a Strawman Solution
A strawman solution of achieving warm GPU function states
for cold invocations is adopting template-start [16, 17], a
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Figure 5: Strawman solution based on CPU-only template-
start, implemented via CUDA IPC.

Table 1: Memory footprint of weights with varied model.
Model ResNet-101 [36] Llama Family-8B/13B/34B [10–12]

Size (B) 170M 15.7G/24.3G/60G

method proven effective in the traditional CPU-only FaaS
to resolve cold start. As shown in Figure 5-(a), this method
saves only request-agnostic initializations in a template and
leverages the system call to launch new invocations from the
template within 10ms. With data sharing via CUDA inter pro-
cess communication (CUDA IPC) [35], a similar template for
LLM functions can be prepared by first loading the model into
GPU. Figure 5-(b) illustrates this approach and summarizes
its limitations, which stem from GPU or LLM-specific factors
and are further elaborated below.

Fast startup but low template density. The strawman so-
lution requires warming the entire model. After the warm-up
phase, the GPU memory utilized by the template primarily
consists of two components: the CUDA context (around 500
MB), and the model weights. Table 1 compares the mem-
ory footprint of traditional small models with that of popu-
lar LLMs. While the footprint of small models can be even
smaller than the requirement for the CUDA context, the situa-
tion becomes significantly worse for LLMs due to their sub-
stantial memory demands. As mentioned before, an Nvidia
RTX A6000 GPU can support only a single template for
Llama2-13B. Such low template density for fast startup is
impractical for a FaaS framework, which is designed to ac-
commodate numerous tenants’ functions.

Vulnerable request-agnostic template. Employing the
strawman solution requires that the saved function state within
the template is request-agnostic. Failure to do so would result
in incorrect outputs and undermine the statelessness principle
of FaaS [37]. Nonetheless, the model initialization for LLM
functions inherently exhibits request-specific variability. Ap-
plication developers may utilize parameter-efficient finetuning
techniques [38], like LoRA [9], to better meet individual user
needs [19–21]. As shown in Figure 6, LoRA [9] allows the
base model to remain unchanged across invocations while

Attach LoRA adpters per invocation ( 26MB )

Transformer 
block

Transformer 
block

Transformer 
block

The same base model for all invocations ( 24.3GB )

Figure 6: Initializing models with different LoRA adapters
for different invocations.
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Figure 7: Fine-grained execution path of model weight-1 and
intrinsic dependency of an LLM function invocation.

loading user-specific LoRA adapters for each request. Al-
though adapters are significantly smaller than the base model
(<1%), the initialization of such dynamic LLM functions is
not request-agnostic and cannot benefit from template-start.
This limitation reduces the general applicability of template-
start for resolve cold start.

Non-shareable and lazy-loading code segments. Not all
GPU data are shareable through CUDA IPC, as only memory
explicitly allocated by the process is accessible through this
mechanism. Code segments used for launching kernels during
inference fall into this category. The CUDA runtime implic-
itly and lazily loads these segments during the first invocation
of the related kernels. Thus, the strawman solution still suffers
from cold kernel calls (around 180ms in Figure 5). A straight-
forward mitigation is to eagerly load all code segments during
pre-warming of CUDA context. Our experiments show that
this approach incurs an additional 1.12 GB of GPU memory
consumption and increases the pre-warm time for a process
from 830 ms to 3050 ms. This significant overhead makes it
impractical to maintain a process pool for LLM invocations.

2.4 Opportunities & Challenges

Fine-grained execution paths help. Figure 7-(a) depicts
a fine-grained execution path for a specific model weight.
In a framework like PyTorch [39] for building LLM func-
tions, weights are loaded from host to the GPU as tensors
during initialization and subsequently utilized by operators
through GPU kernel launches during inference. Moreover,
model inference is also commonly represented as a data flow
graph consisting of interconnected operators. By aligning the
execution paths of all weights with the topological order of
operators in inference, we derive the intrinsic dependencies
of cold-start LLM invocation, as shown in Figure 7-(b).

Figure 7-(b) reveals three key optimizations to address the
limitations. 1) Kernel execution can overlap with weights
loading required for subsequent kernels, removing the need
to store the entire model in template. Since model loading
via PCIe and inference latencies are comparable (hundreds
of milliseconds), carefully managed overlapping would avoid
extra latency while increasing template density. 2) Dynamic
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Figure 8: Design overview of TIDAL and workflow of function invocation in TIDAL.

elements of model initialization, such as LoRA adapters, can
be removed by comparing execution paths across multiple in-
vocations. As these elements constitute only a small fraction,
and the base model’s weights are still saved within the tem-
plate, dynamic LLM functions would benefit from template-
start. 3) Kernels specific to an LLM function can be profiled
during inference and loaded proactively. Since each LLM
function typically uses a small subset of kernels from the ker-
nel libraries, these kernels can be pre-warmed with minimal
overhead but excluded from cold start.

Challenges. There are several challenges in achieving the
above optimizations based on fine-grained execution paths. 1)
Fine-grained execution paths are implicit, making them diffi-
cult to be exposed manually by developers; 2) LLM functions
have per-invocation dynamic behaviors, requiring runtime
extraction of execution paths; 3) General support of these
optimizations for various customized LLM functions is hard
within a FaaS framework.

3 Design Overview

To address these challenges, we introduce TIDAL, an effi-
cient FaaS framework tailored for LLM applications. TIDAL
first proposes a lightweight mechanism for transparently trac-
ing fine-grained execution paths. By leveraging these paths,
TIDAL resolves cold start issues across diverse LLM func-
tions, achieving high template density, robust templates, and
pre-warmed kernel calls.

Figure 8 depicts the design of TIDAL, along with a stream-
lined function invocation workflow. TIDAL comprises three
key modules: a runtime tracer, a template server, and a pro-
cess pool. Each function invocation runs atop a runtime tracer
that traces the fine-grained execution paths with low overhead
(§4.1). It closely interacts with the template server to gener-
ate the function templates and launch new invocations. The
template server stores the function templates and retrieves
model weights from a pinned host memory pool for each in-
vocation. The process pool provides pre-warmed processes
for new function invocations.

Invocation workflow. For each LLM function, a function
template is prepared either offline or online, based on fine-
grained execution paths. TIDAL can adjust the size of model
weights cached on the GPU within the template, while the

1 import tidal
2

3 @tidal.init(static=False)
4 def initializer(event, context):
5 ...
6 llama_weight = tidal.load(event["llama2-13b"])
7 lora_weight = tidal.load(event["lora"]) # dynamic
8 all_weights = llama_weight + lora_weight
9 llama_lora = LlamaLoRA()

10 llama_lora.load_state_dict(all_weights)
11 llama_lora = llama_lora.cuda()
12 return llama_lora
13

14 def handler(event, context):
15 llama_lora = initializer(event, context)
16 output = llama_lora(event["input"])
17 return {"output": output}

Figure 9: Programming interface of TIDAL.

remaining weights are loaded concurrently with inference.
The template is updated by excluding dynamic components
at runtime (§4.2). Once the template is ready, TIDAL accepts
user requests. Using the template, it pre-warms processes
by initializing CUDA contexts and loading kernel code seg-
ments proactively (§5.1). Upon invocation, TIDAL adaptively
forks the saved LLM from the function template as follows:
CPU operations for static model architectures are skipped,
dynamic components are initialized as required, and weights
not cached on the GPU are loaded asynchronously. When
overlapping model loading with inference, TIDAL provides
strict correctness guarantees. (§5.2).

Programming interface. TIDAL adheres closely to the pro-
gramming model of modern FaaS frameworks, as shown in
Figure 2. To express an LLM function in a traceable man-
ner, TIDAL imposes minimal requirements on application
developers. Figure 9 illustrates an example of defining a func-
tion using Llama2-13b with LoRA enabled in TIDAL. The
most noticeable difference is that model developers need to
wrap the function initialization within a method decorated
with tidal.init and explicitly invoke it within the func-
tion handler, This requirement arises because an LLM model
with dynamics must be initialized for each invocation. The
tidal.init decorator accepts an optional argument, static,
to indicate whether the initialization is static or dynamic. With-
out annotation, TIDAL defaults to treating it as dynamic.
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Figure 10: Weight-centric two-phase tracing for weight-1.

4 Template Based on Fine-grained Tracing

In this section, we first introduce TIDAL’s lightweight tracing
mechanism, which transparently extracts fine-grained exe-
cution paths. Additionally, we show details of generating
function templates for startup optimizations.

4.1 Tracing Fine-grained Execution Paths

Traceability of LLM functions. Fundamentally, LLMs are
large-scale deep learning models targeting natural language
processing tasks. Therefore, LLMs follows the generic deep
learning paradigms, where model inference is abstracted as
a data flow graph composed of tensors and operators [40].
While prior works [41] have leveraged this property to trace in-
ference, TIDAL further extends it to model initialization. This
extension is driven by the observation that, once loaded into
host memory, a weight is represented as a tensor, and subse-
quent operations performed on it–such as transferring weights
from CPU to GPU–are all implemented as deep learning op-
erators. Fortunately, these traceable operations correspond to
the fine-grained execution paths that TIDAL needs to optimize
the startup process. TIDAL leaves other non-traceable CPU
operations during initialization to be executed as normal.

Weight-centric two-phase tracing. Blindly tracing func-
tion invocation involves going through all tensors and op-
erators, even those used for temporary storage or reshaping
during inference. This leads to considerable runtime over-
head. Our preliminary results show that the overhead can be
several times greater than that of a standard cold-start invoca-
tion. Since TIDAL focuses on optimizing cold starts in LLM
function invocations, and model weight loading dominates
the initialization, there is no need to treat initialization and
inference with the same tracing mechanism.

Therefore, TIDAL adopts a weight-centric two-phase trac-
ing approach, as illustrated in Figure 10. This method focuses
on execution paths related to weights. During model initial-
ization, TIDAL employs strict tracing to construct data flow
graphs (DFGs) for generating weight tensors. Each weight
tensor’s DFG specifies the shape used for initialization, the
checkpoint for loading weight data, and other relevant details.
Using the DFG, TIDAL identifies weights that are dynami-
cally initialized. For example, in an LLM function with LoRA
enabled, the adapters are flagged as dynamic because they
are sourced from different checkpoints, although their shape

1 2 5

K1 K3 K6

4 3

❷ Weights based on access order

❸ Excluding dynamics via runtime update

❶ Deduplicated kernels:
Kx

Kernel

Weight
on Host

Weight
on GPU

Figure 11: Adaptive function template composed of three key
components. The numerical values indicates the sequence in
which the weights are initialized.

remains the same. During inference, TIDAL employs lax trac-
ing, capturing only the access patterns of weights, including
their order and associated GPU kernels. The tidal.init
decorator in Figure 9 enables TIDAL to differentiate between
the two phases, activating the appropriate tracing mechanism.

4.2 Generating Adaptive Function Template

With the traced fine-grained execution paths, TIDAL gener-
ates the function templates for LLM functions managed by
the template server. The function template generated is adap-
tive in several key aspects: first, it perceives the necessary
kernels for proactive code segment loading with minimal
overhead; second, it adapts its saved state to accommodate
dynamic LLM initialization; third, its GPU memory consump-
tion could be adjusted with loading efficiency guarantee. Such
adaptiveness enables TIDAL to address cold starts for various
LLM functions, regardless of whether models are dynamically
initialized, or what workloads are processed (e.g., model sizes,
request rates, input lengths, etc.). As shown in Figure 11, the
template for a specific LLM function is generated as follows.

Firstly, information about GPU kernels required for proac-
tive loading of code segments is stored in the template. Since
LLM models often consist of multiple identical transformer
blocks, TIDAL scans all traced operators and filters them by
removing duplicates. GPU kernels associated with these oper-
ators are then identified as candidates for proactive loading.

Secondly, model weights are stored in the template with
a re-ordered memory layout. TIDAL reorganizes the weights
based on the traced access order. Without this reorganization,
our evaluation in §7.4 reveals that overlapping efficiency can
be easily compromised by misordered weight initialization,
highlighting the necessity of TIDAL’s tracing mechanism.
By leveraging the traced access order, TIDAL also retains a
subset of model weights on the GPU while preserving only
the memory layouts of others, thereby optimizing the template
size. Weights stored as memory layouts in the template are
efficiently loaded into the GPU during inference.

Thirdly, data flow graphs for generating each model’s
weights are stored in the template to facilitate the exclusion
of dynamic components at runtime. Since TIDAL cannot iden-
tify all dynamic components of an LLM model in a single
tracing pass, its low-overhead tracing mechanism enables the
incremental exclusion of these components during runtime.
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5 Optimizations of Function Startup

In this section, we introduce the key startup optimizations in
TIDAL based on insights from fine-grained tracing: proactive
code segment loading, and adaptive state forking.

5.1 Proactive Code Segment Loading
Avoiding cold kernel call startup requires knowledge of the
kernels to be launched during inference. As discussed in §2.3,
template-start incurs a 180-millisecond cold start due to the
absence of this information. TIDAL addresses it by leveraging
traced kernels stored in its template to proactively load the
relevant code segments during process pre-warming. As a
result, new invocations do not suffer cold kernel calls.

However, this process requires launching the correspond-
ing kernels on the GPU to trigger proactive loading, which
also occupies computational resources. To minimize interfer-
ence with other ongoing invocations, TIDAL reduces the input
dimensions of the triggering kernels. Additionally, as GPU
kernels are already deduplicated during template generation,
the kernel code segments are efficiently loaded during pre-
warming with minimal computational and memory overhead,
as evaluated in §7.4.

Loading policy. Another issue arises from the multi-
tenancy of FaaS, where a single GPU instance serves multiple
LLM functions. Proactively loading code segments for all
deployed functions within a single process may lead to ex-
cessive GPU memory usage and increased triggering latency.
To address this, TIDAL employs a proactive loading policy
that aligns with the set of LLM functions currently cached
in the host memory of the GPU instance. During the pro-
cess pool’s pre-warming phase, TIDAL triggers the loading of
all the deduplicated kernels corresponding to the templates
for these cached functions. This policy ensures that the code
segments of frequently accessed kernels are readily available.

5.2 Adaptive State Forking
With the process pre-warmed with loaded code segment,
TIDAL employs adaptive state forking to efficiently initialize
function states from the template for new invocations.

Adaptive template state reusing. When an LLM is dynam-
ically initialized based on user requests, the function initial-
ization cannot be saved into the template for fast startup in
template-start. As shown in Figure 7, TIDAL maximizes reuse
of static elements from the existing state within the template
by leveraging its traced fine-grained execution paths. Since
dynamic elements typically account for only a small portion
of the entire model (barely 1%), TIDAL achieves fast startup
by reusing the majority of the initialized LLM.

Specifically, TIDAL supports both dynamic initialization
and template-based startup through its runtime tracing. In-
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Figure 12: Adaptively forking an LLM function invocation
and performing inference with overlapped data loading. The
function is dynamically initialized with LoRA enabled.

stead of directly reusing function state from template, TIDAL
executes function initialization atop of runtime tracer. For
model weight identified as static initialization, TIDAL reuses
it from the template server. For model weight identified as
dynamic initialization, TIDAL initializes it within user code.

The left part of Figure 12 presents an example of how
TIDAL forks a new invocation from its function template.
During initialization, TIDAL traces the operators involved in
GPU weight initialization, generating a data flow graph for
comparison with the pre-saved graphs in the function tem-
plate. For weights (e.g., weight-1, weight-5, weight-4, and
weight-3) whose data flow graphs match the template, TIDAL
skips operator execution and directly initializes the tensors
by forking GPU memory pointers from the template. In con-
trast, weight-2, loaded from a different adapter, has a data
flow graph inconsistent with the template. As a result, TIDAL
replays the operators for weight-2 to dynamically initialize it.

Dynamic elements, such as LoRA adapters, are handled
within user code and can be loaded either from host memory
or storage. A function with LoRA enabled may be equipped
with thousands of request-specific adapters [19–21]. Due to
this specificity, the caching policies of FaaS frameworks often
fail to effectively cache checkpoints for these adapters. To
ensure a fair comparison in §7, TIDAL currently loads these
dynamically initialized adapters directly from storage.

Efficient overlapping with correctness ensuring. On the
left side of Figure 12, when weights such as weight-3 and
weight-4 are forked from the template, only their GPU mem-
ory addresses are allocated initially. At this point, their actual
data temporarily resides in the host memory pool and TIDAL’s
template server is loading these weights into the GPU asyn-
chronously in the background. In this case, TIDAL is capable
of overlapping model loading with inference, thus reducing
TTFT of an cold-start LLM invocation to the latency of either
loading or inference, whichever is longer.

While template server enables overlapping, two key is-
sues remain: efficiency and correctness. The misalignment
between the order of weight initialization and their access
order reduces overlapping efficiency when weights are loaded
arbitrarily. TIDAL leverages the traced access order to en-
sure weights are loaded in the correct sequence. As shown
in the right of Figure 12, although weight-3 is initialized
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before weight-4, the template server loads weight-4 ahead
of weight-3 because weight-4 is consumed by a kernel first
during inference, according to the traced access pattern.

For correctness, TIDAL addresses two key aspects. Firstly,
dependencies between weights and kernels must be preserved,
as data is transferred to the GPU using asynchronous copy
operations. To ensure the required data is available on the
GPU before kernel execution, TIDAL injects synchronization
events based on the traced execution paths. Secondly, TIDAL
employs a copy-on-write mechanism to prevent modifications
to weights forked for a new invocation. The runtime tracing in
TIDAL inspects the read-write properties of operators before
launching the underlying kernels. If an operator attempts to
write to a forked weight, TIDAL copies the weight into a new
tensor to maintain its read-only property during inference.

Adapting template size for less cold start. As mentioned
earlier, TIDAL reduces the TTFT of a cold-start LLM invoca-
tion to the greater of the loading or inference latency. Ideally,
this latency could be reduced to match inference, as inference
is the only step that cannot be performed in advance. TIDAL
could adapt the template size on GPU–the model weights
prefetched on the GPU within the template–based on traced
model access order to achieve this. As highlighted in prior
works [18], this is fundamentally a trade-off between com-
putation and data transfer. To improve overlapping, TIDAL
dynamically adjusts the template size based on the following
principles. First, TIDAL need to analyze the function work-
loads to determine the average input length and batch size of
LLM function requests. Using the analyzed data, it profiles
the warm execution to obtain an average TTFT for the current
LLM function. TIDAL then adapts the template size according
to Equation 1,

Mpre f etch = max(Mmodel −TT T FT ×BPCIe,0) (1)

where, Mpre f etch denotes the template size, Mmodel the entire
LLM weight footprint, TT T FT the analyzed average TTFT, and
BPCIe the bandwidth of PCIe. Notably, Mpre f etch represents
the maximum required template size for optimal performance.
TIDAL dynamically adapts this value using its runtime tracing
to balance cold start reduction with high template density.

Keep-alive of dynamic function. FaaS frameworks typi-
cally keep a launched function instance alive for a predefined
interval to handle subsequent requests and avoid cold starts.
However, for dynamic functions that initialize different mod-
els per request, the initialized models cannot be reused for
subsequent requests. With adaptive fork, TIDAL retains static
model weights on the GPU during initialization while only
re-initializing dynamic components. This allows dynamic
functions in TIDAL to benefit from the performance enhance-
ments of keep-alive. To enable adaptive support for keep-alive
across all LLM functions, TIDAL requires application develop-
ers to specify whether a function is dynamically or statically

initialized, as mentioned in Figure 9. During the keep-alive in-
terval, this information allows TIDAL to skip initialization for
static function invocations and leverage adaptive state forking
for dynamic ones. Without this specification, TIDAL assumes
all functions are dynamic, leading to inefficient keep-alive
management for static functions.

6 Implementation

TIDAL is implemented in Python and C++ with approximately
5,800 lines of code. Its function runtime and programming
interface are built by extending PyTorch, utilizing 3,900 lines
of C++ and 1,050 lines of Python. Although TIDAL primar-
ily addresses the cold start challenge for individual LLM
functions by tracing their fine-grained execution paths, we
have also developed a FaaS scheduler prototype to evaluate
its performance with real-world workloads. This scheduler,
consisting of 840 lines of Python, supports essential features
required in a FaaS cluster, such as keep-alive for functions
with high invocation rates and early-reject mechanisms for
timeout requests, etc.

Dispatch-based runtime tracing. TIDAL’s tracing mech-
anism leverages the dispatch mechanism of PyTorch [42],
which enables the injection of tracing code through its Python
frontend before the execution of operators. Although the
weight-centric two-phase tracing is designed to capture only
the fine-grained execution paths needed for startup optimiza-
tion, a naive implementation in Python end introduces sub-
stantial overhead due to frequent context switches between
Python and C++. During inference, this overhead can reach as
high as 100%. To mitigate this issue, TIDAL registers its run-
time tracer as a custom backend in PyTorch, operating entirely
within C++ context. As a result, TIDAL eliminates the over-
head caused by thousands of context switches, significantly
improving the efficiency of tracing and execution.

Tailored memory pool in template server. TIDAL’s tem-
plate server is designed to efficiently transfer model weights
from host memory to the GPU. When overlapping host-to-
GPU data transfers with kernel execution, a single LLM may
require the transfer of numerous weight tensors. Transferring
these tensors individually, as stored in the template, could sat-
urate the command queue for memory copy operations [43],
leading to significant overhead during function initialization.
To address this, TIDAL’s template server automatically merges
weight tensors into fewer tensors when their total number ex-
ceeds a threshold.

7 Evaluation

7.1 Experimental Setup
Testbed. We evaluate TIDAL with two setups. The first
testbed has four servers, each equipped with an AMD EPYC
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Figure 13: TTFT of LLM functions across different LLMs
with input length fixed at 2048 and batch size fixed at 1, in-
cluding variants with LoRA enabled.

7R32 CPU and two Nvidia RTX A6000 (48GB) GPUs. Each
server has 512GB of host memory and communicates with
the GPUs via PCIe 4.0, providing a bandwidth of 32GB/s.
The second testbed is a server with an Intel Xeon Platinum
83698 CPU with 8 Nvidia Amper 100 (80GB) GPUs. This
server has 1TB of host memory, and GPU communication
occurs through PCIe 3.0, offering a bandwidth of 16GB/s.
Both servers run CUDA-12.5 and PyTorch-2.4. We use the
first testbed for most evaluations including startup of single
LLM function and application of TIDAL within a FaaS cluster.
The second sever is used for evaluating the scalability of
TIDAL for distributed LLM functions.

Benchmarks. We evaluate TIDAL using models from
four representative LLM families: GPT-2 [25], OPT [23],
Gemma [24], and Llama [10–12], covering parameter sizes
ranging from 1.5 billions to 70 billions. For single-GPU
LLM function evaluations, we include GPT-2-1.5B, OPT6.7B,
Gemma-9B, Llama3-8B, and Llama2-13B. For evaluation in
a distributed inference environment, we utilize Llama2-13B,
Llama2-34B, and Llama3-70B. LoRA adapters are attached
to evaluated LLMs for constructing dynamic LLM functions,
following the previous works [19, 20]. Across all evaluated
LLM functions, we report their time-to-first-token (TTFT),
which reflects the startup latency corresponding to Stages
3&4 in Figure 3, the primary optimization target of TIDAL.

7.2 Startup of LLM Functions

7.2.1 TTFT across Various LLM Functions

To the best of our knowledge, TIDAL is the first approach to
introduce template-start in GPU-related applications. No prior
work has demonstrated the capability to launch an invocation
directly from a template residing on a GPU. Consequently,
we evaluate TIDAL against the following three baselines for
cold-start LLM function invocation. PyTorch-pin assumes
that the model has been pre-initialized in host pinned memory,
representing the upper bound of latency for a cold-start LLM
invocation. ServerlessLLM, state-of-the-art FaaS solution
for LLM, caches model weights in a separate host-side pinned
memory pool for launching a LLM invocation. Execution
assumes the model has already been loaded into GPU memory

and executed once, representing the lower bound of latency
for a cold-start LLM invocation. In this experiment, TIDAL
prefetches none of weights within the template generated for
all evaluated LLM functions for fair comparison (Tidal-0G).
Each LLM is tested in two versions: the original and a LoRA-
enabled dynamic variant. The input length is fixed at 2048,
and the batch size is set to 1.

Figure 13 shows the TTFT of all evaluated LLM functions.
All latencies are normalized to Pytorch-pin. Compared
to PyTorch-pin and ServerlessLLM, Tidal-0G achieves
1.96×, 2.00× speedup of TTFT on average, respectively.
While none of the systems occupy GPU memory before func-
tion invocation, TIDAL minimizes startup latency by skip-
ping the initialization of static model elements, overlapping
model loading and inference, and proactively loading code
segments using fine-grained execution paths traced during
runtime. In contrast, PyTorch-pin and ServerlessLLM re-
quire the model to be fully initialized and loaded into GPU
memory before inference can begin. Additionally, their model
inference processes are impacted by cold kernel calls, fur-
ther contributing to latency. When LoRA is disabled, TIDAL
delivers an average TTFT speedup of 2.07× compared to
ServerlessLLM. With LoRA enabled, the speedup decreases
to 2.0× on average. The performance slowdown is expected,
as TIDAL’s runtime tracer cannot trace or save the dynamic
initialization of LoRA adapters into the function template.
The initialization of dynamic elements is fully managed by
LLM functions themselves without acceleration. Despite this,
by reusing the majority of the initialized model (99%), TIDAL
still achieves significant reductions for dynamic functions.

Compared to Execution, Tidal-0G remains 22%~84%
slower across all LLM functions. This slowdown can be
attributed to two main factors. First, all model weights in
Tidal-0G are loaded from host memory. By prefetching a
portion of the model weights into TIDAL’s template (template
size), TIDAL can further approach the lower bound. The im-
pact of template size will be discussed later. Second, TIDAL
is unable to trace pure CPU-based operations during initial-
ization, which fall outside its acceleration capabilities. This
limitation is noticeable in the case of GPT2-1.5B, whose ini-
tialization involves numerous CPU operations.

Notably, ServerlessLLM fails to execute LLM functions
wrapped with GPT2-1.5B. This limitation stems from the
fact that ServerlessLLM is not a native FaaS framework
tailored for LLM functions. ServerlessLLM requires manual
adaptation of the LLM model initialization for efficient host-
to-GPU data transfer. In contrast, TIDAL leverages its runtime
tracer to transparently enable its optimizations without the
need for manual intervention.

7.2.2 Ablation Study

To further analyze TIDAL’s effectiveness in reducing startup
latency for LLM functions, we conduct ablation studies. The
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following experiments focus on Llama-family models, as
they are among the most widely used pretrained LLMs for
customization. Experimental results with other LLMs demon-
strate similar trends. We omit the results of PyTorch-pin and
ServerlessLLM from most experiments, as they are signifi-
cantly slower than all configurations of TIDAL.

TTFT with varied template sizes. In this experiment, we
evaluate TIDAL’s effectiveness by varying the template size
on the GPU. Figure 14 illustrates the TTFT of the evalu-
ated LLM functions as the template size varies from 0G
to the entire model size. Specifically, Tidal-Warm refers to
the configuration where the template size equals the entire
model size. Compared to Tidal-0G, Tidal-Warm achieves
a 14%~48% TTFT speedup across all evaluated functions.
Generally, TIDAL’s performance improves with larger tem-
plate sizes, up to the point where model loading fully overlaps
with model inference. From the figure, we also observe that
the template size required for dynamic LLM functions with
LoRA enabled to achieve the best TTFT is smaller than that of
static functions. This is because the initialization of dynamic
functions takes longer than their static counterparts, allowing
TIDAL to use this time to overlap more model loading.

TTFT with varied input lengths and batch sizes. In this
experiment, we explore the impact of function workloads on
TIDAL’s performance. To evaluate this, we create different
workloads by varying function input lengths and batch sizes.
Figure 15 illustrates the TTFT of the evaluated functions with
varying input lengths, while Figure 16 presents the TTFT
of the evaluated functions with increased batch sizes. Both
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Figure 17: Breakdown of TIDAL under different conditions.

figures include three variants of TIDAL, each configured with
a different template size. From these figures, we observe a
turning point for Tidal-0G and Tidal-4G, where their TTFT
converges with that of Tidal-Warm when the input length
or batch size exceeds a certain threshold. This behavior oc-
curs because higher workloads provide TIDAL with greater
capacity to overlap model loading and inference.

Improvement breakdown in TIDAL. Figure 17 summa-
rizes TIDAL’s improvement breakdown using the example
of Llama3-8B with LoRA enabled. The optimizations in-
clude three key steps: kernel code segments are proactively
loaded before invocation, only the LoRA adapters are initial-
ized during invocation, and model loading is overlapped with
both adapter initialization and model inference. Three distinct
cases are observed: when the input sequence length is 2k,
the TTFT is 632ms, dominated by model loading; increasing
the template size to 4GB reduces the TTFT to 571ms, domi-
nated by model inference; and increasing the input sequence
length to 4096 raises the TTFT to 927ms, also dominated by
model inference. These results highlight how workload (input
length) and template size influence performance, with TTFT
bottlenecks shifting between model loading and inference.

TTFT with distributed inference. We also evaluate the
performance of TIDAL in a distributed inference setting. Func-
tions are defined using Llama-family models with 13 bil-
lion, 34 billion, and 70 billion parameters, running on 2,
4, and 8 A100 GPUs, respectively, on our second testbed.
Each LLM is parallelized using tensor parallelism [44].
We compare TIDAL against PyTorch-pin and Execution,
while ServerlessLLM is excluded as it does not natively
support tensor parallelism. Figure 18 shows the TTFT of
three distributed LLM functions. Compared to PyTorch-pin,
Tidal-0G, Tidal-4G, Tidal-8G, and Tidal-Warm achieve
TTFT speedups of 1.76 × ~2.01×, 2.33 × ~2.66×, 3.15 ×
~4.24×,and 3.19×~5.16×, respectively. This consistent per-
formance demonstrates TIDAL’s scalability in a distributed
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Table 2: LLM tasks with their average input length provided,
as it significantly impacts the TTFT of each LLM invocation.

Tasks Mail [45] Conv [33] Code [33] LongBench [34]
Input len. (Avg.) 867 1154 2048 6101

inference environment.

7.3 Evaluation with Real-world Traces

We further evaluate TIDAL using real-world workloads on 4
servers of first testbed. Specifically, we generate 16 LLM func-
tion traces by combining real-world serverless workloads [46]
with LLM tasks [33, 34, 45]. Out of the 16 function traces,
we include four replications each of Llama3-8B, Llama3-8B-
LoRA, Llama2-13B, and Llama2-13B-LoRA. Each replica-
tion is associated with a specific task listed in Table 2. The
function traces represent low, medium, and high invocation
rates, covering a range of input sequence lengths. Across all
traces, the batch size is fixed at 1. To ensure feasibility, the
traces are scaled and accelerated to complete within 6 hours,
as the original traces, sourced from a large cluster, span a du-
ration of 7 days. For evaluation purposes, the request timeout
during scheduling is set to 60 seconds. As detailed in §2.2, all
models are pre-loaded into a host-side pinned-memory pool.

We compare TIDAL with ServerlessLLM [14], the only
publicly available end-to-end FaaS solution. We first set the
keep-alive interval to the model loading time following Server-
lessLLM. Figure 19-(a) presents the results for Serverless-
LLM alongside three variants of TIDAL: Tidal sets the tem-
plate size of all functions to zero. Tidal-DK extends Tidal
by enabling keep-alive for dynamic functions. Tidal-DK-6G
further enhances Tidal-DK by selecting function 4 traces and
increasing their template size to 6GB of memory on 2GPUs.
Since 8 GPUs are used for evaluation, 6GB of each selected
GPU’s memory is allocated for caching the function templates.
The adjustments of template size are guided by Equation 1.

Compared to ServerlessLLM, Tidal reduces the 95%-ile
latency of TTFT by 76.0%, as TIDAL significantly reduces
GPU-side cold start across all LLM functions. As illustrated in
the amplified CDF, the variants of TIDAL progressively reduce
function latency, with each variant outperforming the previous
one. With keep-alive enabled for dynamic LLM functions,
Tidal-DK effectively avoids the cold starts of dynamic LLM
invocations with high invocation rates. In Tidal-DK-6G, 6GB
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of GPU memory is allocated for storing templates. However,
this memory usage does not impact the invocation of other
functions, indicating a high template density. Additionally, by
increasing the template size for four functions, Tidal-DK-6G
further reduces their cold start latency. Overall, Tidal-DK-6G
achieves the best performance.

To further evaluate TIDAL’s cluster-wide performance, we
increased the keep-alive interval to 10 seconds. Figure 19-(b)
shows the average latency across various percentile stages.
Under different keep-alive configurations, TIDAL consistently
outperforms ServerlessLLM at all percentile stages, demon-
strating its robustness as a FaaS framework for LLMs.

7.4 Optimizations
Loading order of model weights. We evaluate TIDAL un-
der different weight-loading orders, with the results shown in
Figure 20-a. Tidal denotes the access order traced by TIDAL.
Reverse represents the reverse of Tidal, while Default cor-
responds to the initialization order of the weights. Compared
to Reverse and Default, Tidal achieves performance im-
provements of 1.55× and 1.54×, respectively. The similar
performance of Default and Reverse attributes to the fact
that many LLMs, such as Llama2 [11], share the weights of
their embedding layer (the first layer) with the final output
layer. Moreover, this weight tensor is initialized and loaded
by the last layer but accessed first during inference. In con-
trast, TIDAL automatically extracts such fine-grained execu-
tion paths, thus maximizing overlapping efficiency.

Overhead reduction in TIDAL. The overhead in TIDAL
arises from two aspects. First, proactive code segment load-
ing increases the memory consumption of each pre-warmed
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Table 3: TTFT (ms) of Llama2-70B on 8 A100 GPUs, with
and without weight tensor merging.

Input len. 512 1024 2048 4096 8192 16384
No Merge 1366 1370 1371 1541 2203 4084

Merge 1363 1364 1366 1381 1539 3406

process for LLM functions. Experimental results indicate that
TIDAL raises memory usage per pre-warmed process from
270MB to 350MB and extends process pre-warming time
from 830ms to 1070ms. Such overhead is acceptable relative
to the substantial requirements of an LLM function invocation.
Second, TIDAL’s runtime tracing could reduce inference per-
formance. In Figure 20-(b), we compare the LLM decoding
latency of TIDAL with native PyTorch to evaluate this impact.
During this phase, the model weights are already loaded into
memory, but TIDAL’s runtime tracing remains active to ensure
correctness guarantees. Compared to native PyTorch, TIDAL
incurs an overhead of less than 1.2%.

Memory pool in template server. When there are too many
weight tensors, TIDAL’s template server merges them into
fewer weight tensors to improve overlapping efficiency. For
instance, while Llama2-70B initializes 1,200 weight tensors,
TIDAL merges them into just 300 tensors. Table 3 compares
the TTFT of Llama2-70B with and without weight tensor
merging. Without tensor merging, the overhead increases with
input length but stabilizes at 600 milliseconds. By leveraging
tensor merging, TIDAL achieves strong scalability, even as
LLMs scale to extremely large sizes.

7.5 Security Analysis in TIDAL

TIDAL shares static initialization across different invocations,
ensuring that this initialization does not include any request-
specific content. Furthermore, TIDAL’s runtime tracer guar-
antees that all weight tensors are shared in a copy-on-write
manner during inference. A potential data leak could occur
if application developers’ customized GPU kernels bypass
TIDAL’s runtime tracer. To address this, TIDAL requires devel-
opers to register their customized GPU kernels in PyTorch for
tracing. A static code analyzer could be employed to identify
and mitigate such issues.

8 Related Work

Optimizations of Cold Start. Several studies [26–28] have
explored optimizing cold starts in FaaS frameworks for deep
learning inference. Tetris [27] reduces memory footprints
through tensor sharing to warm more functions, while Opti-
mus [28] reuses model structures across functions to optimize
function loading. However, thet primarily target deep learning
models [36, 47], and focus exclusively on CPU-based infer-
ences. In contrast, TIDAL addresses GPU-side cold starts for

LLM functions, a critical and overlooked issue.
InstaInfer [26] addresses GPU-side challenges by employ-

ing preloading techniques but falls short of fully eliminat-
ing cold starts due to its load-dependent design. Serverless-
LLM [14] optimizes data transfers from storage to host mem-
ory and employs a locality-driven scheduler for reducing cold
start for LLM functions. However, ServerlessLLM neglects
GPU-side cold starts, missing opportunities to overlap host-
to-GPU data transfers with model inference, proactively load
critical code segments, and tackle the cold starts of dynamic
LLM functions.

Template-start in CPU-only FaaS Template-start tech-
niques [16, 17] have been widely adopted in CPU-only FaaS
frameworks to eliminate cold starts for new invocations.
Among these, Catalyzer [17] was the first to propose launch-
ing new invocations from an existing template, effectively
bypassing function initialization. Rund [16] further improves
template deployment density by introducing lightweight se-
cure container runtime. Inspired by these works, TIDAL goes
further by generating adaptive function templates based on
traced fine-grained execution paths, rather than simply reusing
an existing template.

Serverless Scheduling for Deep Learning. Substantial
works [48–52] have explored integrating deep learning appli-
cations into serverless environments with advanced schedul-
ing techniques. Some efforts [48, 49, 51, 53] enable dynamic
batching for deep learning inferences within serverless frame-
works. INFaaS [52] further introduces the concept of model-
less architectures for automated management of model vari-
ants. These advanced scheduling techniques are complemen-
tary to TIDAL and could be integrated to further enhance the
performance of LLM functions.

9 Conclusion

In this paper, we presented TIDAL, an optimized Function-
as-a-Service (FaaS) framework designed to address the chal-
lenges of serving Large Language Model (LLM) applications
within FaaS environments. By tracing fine-grained execu-
tion paths to generate adaptive function templates, TIDAL
effectively overcomes GPU-side cold start issues that hin-
der existing frameworks. Our extensive evaluations high-
light TIDAL’s ability to significantly reduce cold start latency
by 1.79~2.11× and improve the 95%-ile TTFT by 76.0%,
compared to state-of-the-art solutions. These results confirm
TIDAL’s potential as a robust and efficient FaaS framework
for the growing demands of LLM workloads.
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