Check for
Updates

Taming Flexible Job Packing in Deep Learning Training Clusters

PENGYU YANG?, Shanghai Jiao Tong University, Shanghai, China

WEIHAOQO CUI", Shanghai Jiao Tong University, Shanghai, China and National University of Singapore, Singa-
pore, Singapore

CHUNYU XUE, Shanghai Jiao Tong University, Shanghai, China

HAN ZHAOQ, Shanghai Jiao Tong University, Shanghai, China

CHEN CHEN, Shanghai Jiao Tong University, Shanghai, China

QUAN CHEN, Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China

JING YANG, Shanghai Jiao Tong University, Shanghai, China and State Key Laboratory of Public Big Data, Guizhou
University, Guiyang, China

MINYI GUO, Computer Science, Shanghai Jiao Tong University, Shanghai, China

Job packing is an effective technique to harvest the idle resources allocated to the deep learning (DL) training jobs but not
fully utilized, especially when clusters may experience low utilization, and users may overestimate their resource needs.
However, existing job packing techniques tend to be conservative due to the mismatch in scope and granularity between
job packing and cluster scheduling. In particular, tapping the potential of job packing in the training cluster requires a
local and fine-grained coordination mechanism. To this end, we propose a novel job-packing middleware named GIMBAL,
which operates between the cluster scheduler and the hardware resources. As middleware, GIMBAL must not only facilitate
coordination among the packed jobs but also support various scheduling objectives of different schedulers. GIMBAL achieves
dual functionality by introducing a set of worker calibration primitives designed to calibrate workers’ execution status in a
fine-grained manner. The primitives obscure the complexity of the underlying job and resource management mechanisms,
thus offering the generality and extensibility for crafting coordination policies tailored to various scheduling objectives. We
implement GIMBAL on a real-world GPU cluster and evaluate it with a set of representative DL training jobs. The results show
that GIMBAL improves different scheduling objectives up to 1.32Xx compared with the state-of-the-art job packing techniques.

CCS Concepts: « Computer systems organization — Cloud computing.

Additional Key Words and Phrases: Job packing, DNN training, GPU cluster, Co-location

1 Introduction

GPU clusters are now fundamental infrastructures for training deep learning models, which usually host a vast
number of training jobs submitted from multiple tennants [12, 20, 23, 34, 40, 50]. In such clusters, there usually

“Both authors contributed equally to this research.

Authors’ Contact Information: Pengyu Yang, Shanghai Jiao Tong University, Shanghai, China; e-mail: yp_yuu@sjtu.edu.cn; Weihao Cui,
Shanghai Jiao Tong University, Shanghai, China and National University of Singapore, Singapore, Singapore; e-mail: weihao@sjtu.edu.cn;
Chunyu Xue, Shanghai Jiao Tong University, Shanghai, China; e-mail: dicardo@sjtu.edu.cn; Han Zhao, Shanghai Jiao Tong University,
Shanghai, China; e-mail: zhaohan_miven@sjtu.edu.cn; Chen Chen, Shanghai Jiao Tong University, Shanghai, China; e-mail: chen-chen@sjtu.
edu.cn; Quan Chen, Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China; e-mail: chen-quan@cs.sjtu.edu.cn;
Jing Yang, Shanghai Jiao Tong University, Shanghai, China and State Key Laboratory of Public Big Data, Guizhou University, Guiyang,
Guizhou, China; e-mail: jyang23@gzu.edu.cn; Minyi Guo, Computer Science, Shanghai Jiao Tong University, Shanghai, China; e-mail:
guo-my@cs.sjtu.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2025 Copyright held by the owner/author(s).

ACM 1544-3973/2025/1-ART

https://doi.org/10.1145/3711927

ACM Trans. Arch. Code Optim.

HTTPS://ORCID.ORG/0009-0004-6225-2139
HTTPS://ORCID.ORG/0000-0002-6646-5260
HTTPS://ORCID.ORG/0009-0008-9272-1732
HTTPS://ORCID.ORG/0000-0002-1561-5329
HTTPS://ORCID.ORG/0000-0001-9480-5632
HTTPS://ORCID.ORG/0000-0001-5832-0347
HTTPS://ORCID.ORG/0009-0007-8456-2420
HTTPS://ORCID.ORG/0000-0003-0034-2302
https://orcid.org/0009-0004-6225-2139
https://orcid.org/0000-0002-6646-5260
https://orcid.org/0009-0008-9272-1732
https://orcid.org/0000-0002-1561-5329
https://orcid.org/0000-0001-9480-5632
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0009-0007-8456-2420
https://orcid.org/0000-0003-0034-2302
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711927
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711927&domain=pdf&date_stamp=2025-01-13

2 .« P.Yangetal.

Restriction for low interference Migration for mitigating straggling
3 Job with
Q stragglers
& gg
GPU-0 GPU-1 GPU-2 GPU-3 GPU-0 GPU-1 GPU-2 GPU-3
(a) Packing jobs with probably performance degradation (b) Packing jobs with unequal GPU demands

Fig. 1. Limitations of the conservative job packing in existing schedulers for training cluster.

exists a dedicated scheduler to manage the submitted jobs, and the scheduler design is crucial for cluster efficiency.
In the literature, many scheduling techniques have been proposed to attain good performance in aspects like job
completion time (JCT) [23], makespan [50], and deadline fulfillment [20].

In particular, given that GPU computing capability is growing exponentially [1, 3], job packing stands out as a
key technique to maximize cluster resource utilization [23, 34, 50, 52]. According to the production traces [26],
the allocated GPUs in typical training clusters are utilized at a very low level. By packing multiple jobs onto the
same GPUs, cluster schedulers can harvest idle GPU resources, thus boosting cluster throughput and reducing
job queuing delay. However, the packing mechanism of existing schedulers [23, 34, 50, 52] is over-conservative,
which limits its capacity to improve cluster efficiency. Figure 1 illustrates the two primary limitations inherent in
the conservative nature.

L1. Firstly, to avoid potential dramatic performance slow-down, job packing is limited to jobs with low
interference. The jobs packed by existing schedulers [23, 34, 50] freely compete for resources, either in a time-
sharing or a spatial-sharing manner. When packed, jobs with high computational demands are likely to interfere
with each other significantly, as illustrated in Figure 1-(a). It can lead to worse performance than executing those
jobs sequentially. However, our experimental results in §2.2 show that if we restrict the execution of one job’s
workers using a technique like CUDA Multi-Process Service (MPS) [35] in such cases, the interference between
packed jobs can be minimized, thus bringing performance improvement.

L2. Secondly, to avoid stragglers in distributed training, job packing is limited to jobs with identical GPU
number demands. As shown in Figure 1-(b), packing jobs with different numbers of GPUs would yield inconsistent
processing speeds across different job workers. With no workload redistribution mechanism in existing schedulers,
the slow workers would become stragglers and degrade the end-to-end training performance. However, if a fast
worker can somehow “steal” certain workloads from the slower ones, it would be possible to mitigate those
stragglers. That is, with intra-job workload rebalancing enabled, arbitrarily packing two jobs demanding different
numbers of GPUs may still attain better overall performance than that without packing.

With the increasing prevalence of large language models, the deficiency of conservative packing is much more
obvious. Large language models [9, 46, 47] have outstanding capabilities on general-purpose language generation
and have substantially revolutionalized various application fields. Yet, pretraining or fine-tuning a large language
model is usually very compute-intensive. Meanwhile, with the persistent adoption of classical CNN or RNN-based
neural network models, production clusters often face a mixture of (traditional) “small” and (new) “large” model
training jobs. In that sense, it is an urgent need to allow more flexible job packing to fully unleash the potential
of resource utilization enhancement.

We find that the conservative job packing used in existing schedulers stems from the mismatch in scope and
granularity between cluster scheduling and job packing. Schedulers are designed as job-level global managers,
which allocate resources for training jobs in the cluster. Based on the profiled or predicted job performance, they
are naturally suited for selecting appropriate jobs from the submitted ones for packing. However, restricting
the execution of one job’s workers and rebalancing the workload among workers are worker-level coordination
mechanisms. They function locally within the packed jobs that share the same hardware resources. Moreover,
such coordination is a runtime adjustment that needs to be conducted incrementally according to our investigation

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters + 3

in §2.2. It is critical to have a local manager that coordinates the workers of each job packing combination in a
fine-grained manner for tapping the potential of job packing.

To this end, we propose GIMBAL, a novel job-packing middleware between cluster scheduler and hardware
resources. As for each scheduled job packing combination, GIMBAL locally coordinates the involved workers
in a fine-grained way to relax the conservative nature of job packing. Meanwhile, as a middleware, GIMBAL
must be general and extensible to accommodate various scheduling objectives since schedulers are designed for
different goals [20, 23]. At the core of GIMBAL, we propose worker calibration primitives, worker . squeeze ()
and worker.swell(). The two primitives expose the capability for fine-grained worker coordination in a generic
way, thus unifying the construction of tailored coordination policies for various schedulers.

Specifically, when a job worker is swelled, the worker’s execution speed is adjusted to be faster, while the
worker is squeezed when the execution speed needs to be slowed down (a process we refer to as calibration).
Behind the calibration primitives, GIMBAL incorporates two calibration mechanisms, low-level GPU resource
restriction (addressing L1) and lossless input sample stealing (addressing L2), to achieve the adjustment of worker
execution speed accordingly without modifying user code. At runtime, GIMBAL maps primitives to different
combinations of calibration mechanisms for worker coordination.

Since the primitives obscure the complexities of calibration mechanisms, cluster maintainers only need to
use the primitives to implement the coordination policy that aligns with the scheduler’s objectives. Instructed
by the coordination policy, GIMBAL further coordinates the involved workers for each scheduled job packing
combination. We have extended state-of-the-art schedulers [23, 34, 50] using GIMBAL’s primitives for various
scheduling objectives, including job-completion time, deadline awareness, and makespan. As for other scheduling
objectives, the cluster maintainer could also implement the corresponding coordination policy with the two
primitives.

We extensively evaluate GIMBAL with production trace [48, 49] using representative benchmarks, including
large language models and traditional deep learning models. Our experimental results show that GIMBAL achieves
average JCT and queuing delay improvement by 1.28x and 1.87X respectively, job completion ratio improvement
by 1.22%, and makespan improvement by 1.12X. In this paper, we make the following contributions:

e We reveal that the root cause of the conservative nature of job packing in existing works is the scope and
granularity mismatch between cluster scheduling and job packing.

e We relax the conservative nature of job packing with fine-grained coordination, thus tapping the potential of
job packing for enhancing cluster efficiency.

e We propose general calibration primitives to locally and incrementally coordinate the workers of packed jobs,
which are generic and extensible for supporting various scheduling objectives.

e We implement the state-of-the-art scheduling policies in GIMBAL, showing significant improvement in job
completion time, deadline awareness, and makespan.

2 Background and Motivatioin

In this section, we begin with providing an overview of cluster scheduling in deep learning clusters and the way
of using job packing to improve cluster utilization. Next, we discuss the untapped potential in the current job
packing with experimental results. Finally, we delve deeper into the root cause of these inefficiencies to motivate
the design of GIMBAL.

2.1 Scheduling In Cluster for Deep Learning

Large-scale deep learning clusters are widely used in industry and academia to train deep learning models [31, 39],
which consist of a large number of GPUs and are multi-tenant. The same as traditional HPC clusters, deep learning
clusters also need to allocate resources to different jobs and schedule them to maximize cluster utilization. Various

ACM Trans. Arch. Code Optim.

4 « P.Yangetal

1.4 7k

Free-competition~_ -~
- \“\ i No-packing 7 No-straggling

13 /T'; % Straggling 7

- L 6k 4

g 1.2 - V)

£ = v
g1l g 7 47
é 1.0| Nopacking §0 5k 7 ’ / 4/
= g 7 7 / %
5 09 > v v 7/
3) Z v) 77
= MNV2+VGGIl ~ —a— RNIS+MNV2 W 4k ;7 ” ’ /;
0.8 MNV3+LLaMA ~ —e— RN50+RN50 4’; ” ’ 24
0.7 OFA + LLaMA 77 W % VY
97 /7//) v Vidd

20 40 60 30 100 3k LMNV2 MNV3 _PLNAS RN L OFA

MPS percentage of the second job (%) vaail RN50 LLaMA vaai BERT

a) Packing with different resource restriction schemes. b) Packing with different GPU numbers.

g g

Fig. 2. Inefficiencies of the conservative job packing: (a) JCT Improvement for each packing pair with different MPS schemes,
normalized to no-packing (launching jobs in serial). While the first job occupies at most 100% resources, the at-most resource
of the second job varies from 0 to 100 percent. All jobs require 2 GPUs. (b) Average JCT for each scheduling job pair under
no-packing, packing with straggling, and packing without straggling. Jobs are packed under free competition without resource
restriction. While the first job requires 4 GPUs, the second job requires 2 GPUs.

dedicated schedulers have been proposed to tackle the unique scheduling challenges in deep learning clusters,
including fulfilling different scheduling objectives [12, 20, 50], handling cluster heterogeneity [32, 34, 54, 55],
supporting training jobs with adaptive resource requirements [25, 40], ete.

To enhance the scheduling efficiency, many schedulers employ job packing mechanism [23, 34, 50, 51], as it
can harvest the resources allocated to jobs but not fully utilized. In deep learning clusters, user-specified resource
requirements can often be overestimated to ensure the job.can be finished within a reasonable time. Job packing
enhances cluster-level hardware utilization by carefully selecting the inefficient jobs of complementary resource
requirements for co-location [50].

2.2 Untapped Potential in Conservative Job Packing

Although job packing has proven effective [23, 34, 50], the methods employed by existing schedulers are over-
conservative to prevent compromising scheduler objectives. They adhere to certain conservative practices: 1)
only packing jobs with negligible interference under free-contest sharing; 2) only packing jobs with identical
resource requirements, particularly GPUs. We conduct experiments using representative DL training jobs to
explore inefficiencies of conservative job packing and identify potential improvements. The benchmarked training
models are selected following the previous works and current trends. Model details and their abbreviations are
presented in Table 1.

Minimizing slowdown in free-competition packing. Job packing under free-competition sharing can lead
to dramatic slow-downs and performance instability, especially when the packed jobs are compute-intensive.
New advanced GPU-sharing technologies, such as MPS, Multi-Instance GPU (MIG) [16, 35], have shown the
ability to restrict resources among co-located programs. In this case, we examine job performance slow-down
under resource-restricted co-location to find more beneficial co-location options than free-competition packing.

Figure 2-a shows the JCT of five packing pairs of two jobs with different resource restriction schemes. The
scheduling objective in the experiment is JCT, and we use MPS for resource restriction. MPS does not ensure strict
resource isolation but imposes a limit on the maximum resources a process can utilize. As shown in the figure,
only two of the five co-location options outperform no packing under free competition (x = 100), whereas four
perform better when resource restriction is enabled (such as x = 60). The two new additions feature Llama [47]
for packing, a widely-used large language model. Therefore, sharing resources with restrictions can increase the
opportunities for beneficial job packing.

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters + 5

Meanwhile, different co-location options have different performance curves, which depend on the jobs’ charac-
teristics. Since the training jobs arrive randomly at runtime, it is hard to prepare an accurate performance model
before scheduling. Under these circumstances, we need to search for the optimal packing setup incrementally.

Mitigating stragglers in unequal packing. Unequal packing refers to the practice of packing jobs with
inconsistent GPU requirements, which introduces stragglers. For instance, in Figure 1-(b), Job A (requiring 4
GPUs) and Job B (requiring 2 GPUs) are packed together. In this experiment, we manually mitigate stragglers
caused by unequal packing and evaluate the impact of stragglers with or without straggling. Specifically, we
adjust the batch sizes of a training job’s workers for the load distribution. Based on this, all workers could
complete the computation at a similar time.

Figure 2-b shows the average JCT of each scheduling job pair under no-packing, packing with straggling
and packing without straggling. We observe that the packing jobs with straggling perform better in 3 out of
the 5 benchmarked job pairs. This indicates that while stragglers exist in unequal packing, packing can be still
beneficial in some cases. Meanwhile, after mitigating stragglers, job packing outperforms no-packing and packing
with straggling in all cases. Therefore, it is also urgent to enable the automatic straggler mitigation mechanism in
existing schedulers to maximize the potential of job packing.

In addition, the execution speed of different jobs has different relationships with the batch size, and the
interference to the straggler depends on the co-running job. This also means that we cannot adjust the batch size
of the workers in advance. Therefore, we also need to balance the workload in a fine-grained way.

2.3 Scope and Granularity Mismatch between Scheduling and Packing

Although the opportunities mentioned above alleviate the conservative nature, integrating them into existing
schedulers is challenging. The core issue is the scope and granularity mismatch between scheduling and packing.
A scheduler for a training cluster aims to enhance cluster efficiency at the job level by assigning the right jobs
with suitable resource allocations. The scheduler selects jobs for packing because co-locating them aligns with
the cluster’s scheduling objectives. However, to enable the new potential improvement in §2.2, it is crucial to
locally adjust each worker of the packed jobs in a fine-grained way. These mismatches between scheduling and
packing hinder a training cluster from maximizing the potential of job packing. Therefore, this paper designs
GIMBAL, a generic middleware for automatically coordinating workers to bridge the gap between scheduling
and packing. Upward, GIMBAL adapts to various scheduler targets. Downward, it seamlessly integrates with the
worker coordinating mechanisms to optimize job packing.

3 Architecture Overview

GIMBAL proposes to perform fine-grained worker coordination to fully tap the potential of job packing in DL
training clusters. The core of GIMBAL is a set of calibration primitives that speed up or slow down the workers of
packed jobs. The calibration primitives facilitate the expression of various coordination policies towards different
scheduling objectives. During runtime, GIMBAL utilizes the primitives to calibrate workers’ execution status
based on the coordination policy, which instructs the job packing to maximize the performance related to the
scheduling objective.

Architecture. Figure 3 illustrates the architecture of GiMBAL. GIMBAL works as a middleware between the
scheduler and the hardware resources, enabling flexible and efficient job packing for various scheduling objectives.
It consists of three modules: a runtime monitor, a worker calibrator, and an aggressive packing coordinator. In
GIMBAL, the runtime monitor and the worker calibrator work on their own, while the aggressive packing
coordinator requires coordination policy customization for different scheduling objectives. Inside the aggressive
packing coordinator, we have implemented the policies for minimizing JCT, makespan, and fulfillment of job

ACM Trans. Arch. Code Optim.

6 « P.Yangetal.

Job Queue
4 = i . " "
@ < —-—0 / Aggressive packing coordinator
Vision Speech LLM Fine-tuning H
0
Schedulers i/ d v Ko
(Luwid) (Gandiva) (Gavel) Coordination plan %‘9(‘4
L] /! Runti Primitives ‘
[Gimbal J monitor | worker.squeeze | | worker.swell

P ~_

Job 5] [4ob5]. | [Job 6] [Jon | ||[Job 7] i[dob 7 i \ alibrating Mechanisms |
\ Calibrating Mech
Job 8| :(Job 8 \
- - [l © ° \ Low-level resource Lossless input
Node1 | Node2 | Node3 | Node4 4 1 isolation sample stealing
Training Cluster \ Worker calibrator
- Cluster Maintainer Responsible Gimbal Responsible

Fig. 3. Overview of GIMBAL’s system architecture.

deadlines. As for other scheduling objectives, the cluster maintainer is responsible for extending the coordinator
by adding new policies with the proposed primitives.

Workflow. GiMmBAL is designed to be generic and extensible, which means it can be easily integrated into existing
DL training clusters without modifying the scheduler. The schedulers in DL training clusters are responsible for
selecting jobs for packing. With the packing decisions made, Gimbal then coordinates the workers of packed jobs
to achieve the best packing efficiency.

In a typical workflow, the scheduler (like Lucid [23]) selects jobs for packing and passes the scheduling
decisions to GIMBAL. GIMBAL then launches the packed jobs on the allocated GPUs. The runtime monitor collects
runtime information of workers, such as GPU utilization, memory usage, and training speed. Based on the
runtime information, the aggressive packing coordinator finds an efficient coordination plan using its predefined
coordination policy (JCT for Lucid as Lucid is a JCT-oriented scheduler). A coordination plan is a set of invocations
of calibration primitives (more details in §4.2). Behind these primitives, GIMBAL automatically calibrates workers’
execution status using a combination of supporting mechanisms, such as low-level GPU resource restriction
(LGRR) and lossless input sample stealing (LISS). The coordinator and calibrator work iteratively, which locate
the optimal worker coordination status for the packing jobs in an incremental way.

4 Calibration of Job Packing

In this section, we present GIMBAL’s worker calibrator, which allows for fine-grained coordination of packed jobs.
We start with calibration primitives and calibration mechanisms. Then we demonstrate the mapping between
primitives and mechanisms for a single job. Finally, we will show how a coordination plan is applied through
calibration primitives.

4.1 Calibration Primitives and Mechanisms

Calibration Primitives. Optimal fine-grained worker coordination for job packing performance involves
joint use of the worker calibration opportunities outlined in §2.2. It is challenging for the schedulers to directly
determine how to use these opportunities, as the coordination heavily relies on job placement and requires
incremental adjustments. However, it is straightforward to determine whether the calibration effect, speeding
up or slowing down a specific worker, benefits the scheduling objectives. For instance, Job A and Job B are
packed together. Under free competition, Job B requires 5 hours to complete, but due to significant performance
interference, Job A’s completion time is extended to 10 hours. By squeezing resources from Job B, its completion
time increases to 7 hours; however, Job A gains more resources and improves its performance, reducing its
completion time to 5 hours. As a result, by slowing down Job B and speeding up Job A, the average JCT decreases

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters « 7

Input sample
Resource 1 i 7 7 stealing
3 restriction D D
o
J D — B s co—— B B0 B3 B
GPU-O GPU-I GPU-2 GPU-3 GPU-O GPU-I GPU-2 GPU-3 OPU-0. GPU-I - GPU-2 - GPU-3 GPU-0 GPU-I - GPU-2 - GPU-3
(a) Low-level GPU resource restriction mechanism. (b) Lossless input sample stealing mechanism.

Fig. 4. (a) LGRR controls the training speed of jobs by changing resource limits, while (b) LISS allows the load to flow between
workers within a job.

from 7.5 hours to 6 hours, leading to an overall improvement. In this case, GIMBAL proposes.two simple and
intuitive calibration primitives for the scheduler to use for worker coordination.

e worker.squeeze(): The squeeze primitive is used to indicate that a worker’s training speed needs to be
slowed down.
o worker.swell(): The swell primitive is used to indicate that a worker’s training speed needs to be sped up.

Mechanisms for incremental calibration. To support primitives and utilize opportunities in §2.2, we
implement two underlying mechanisms that incrementally calibrate workers’ execution status. These mechanisms
do not directly correspond to primitives, but their activation ultimately achieves the effect of accelerating or
decelerating the worker’s speed as dictated by the primitives.

Low-level GPU resource restriction (LGRR). In job packing, if a training job is computationally intensive
or has a large batch size, it may fill the GPU task queue with numerous CUDA kernels, thereby monopolizing
the majority of GPU resources. This causes packed jobs to be forced to wait, resulting in severe and unstable
performance degradation. GIMBAL devises a mechanism named low-level GPU resource restriction to alleviate
these issues based on MPS [35].

Figure 4-(a) shows an example of restricting job workers with LGRR. Restricting a worker’s allocated resources
through MPS slows down its corresponding speed, and the co-located one can launch its kernels with more
resources, thus achieving a stable speedup. In GIMBAL’s calibrator, we adjust the resource restriction at a fixed
granularity percent of the total GPU resources. Through empirical evaluation, we found that granularity of 10%
strikes a good balance between coordination duration and the quality of results, as detailed in §7.4. Notably, the
resource allocated by MPS to all packed jobs can exceed 100% (200% represents free-competition). In this case,
kernels from co-located jobs still can be interleaved.

Lossless input sample stealing (LISS). In unequal packing, where a distributed job is co-located with several
different jobs, the varying degrees of interference lead to stragglers among the workers. Inspired by LB-BSP, a
method designed to mitigate stragglers in deep learning training on heterogeneous GPUs [13], we introduce the
lossless input sample stealing mechanism to address this issue. We consider the input sample as a load and allow
faster workers to steal the sample from slower workers, thereby reducing the workload of slower workers and
enhancing their training speed, as shown in Figure 4-(b). The convergence and correctness of the imbalanced
distribution of input samples among workers have been proven by LB-BSP. Although GimBAL does not originate
the concept of modifying workers’ sample numbers for straggler mitigation, it is the first to apply this method to
mitigate stragglers in scenarios involving unequal packing.

4.2 Applying Coordination Plan through Calibration

GiMBAL calibrates workers according to its received coordination plan. Therefore, GIMBAL is required to map
primitives to mechanisms automatically. In this subsection, we first introduce the mappings and then demonstrate
the application of the coordination plan with a typical example.

ACM Trans. Arch. Code Optim.

8 + P.Yangetal.

High Interference Swell Squeeze Swell Squeeze
/ | ¥ N
(10D || | OIEmm z, |23 EAl [sov 1 {f} gob1 |
mrrm ESEamem BES e
GPU-0 GPU-I GPU-2 GPU-3 GPU-0 GPU-I GPU-2 GPU-3 GPU-0 GPU-I GPU-2 GPU-3
(a) Unequal packing jobs (b) LGRR mechanism (c) LISS mechanism

Fig. 5. Stragglers appear in unequal packing jobs, reducing overall training efficiency. In (a), GPU 0 and 1 cause significant
interference, slowing down Job 1 training. This issue can be mitigated using the low-level GPU resource restriction (LGRR)
mechanism and the lossless input sample stealing (LISS) mechanism, as shown in (b) and (c), respectively.

Mapping Primitives to Mechanisms. For each job, depending on the combination of worker primitives, the
worker calibrator will use different underlying mechanisms. Based on the different workers squeezed or swelled,
GiMmBAL derives the following possibilities.

e Squeeze/Swell only the specified N workers: Only slowing down/speeding up the workers in the current
job. GIMBAL’s calibrator first activates LGRR to set a smaller/larger resource limit for these workers. Since
LGRR may lead to the emergence of stragglers, Gimbal then utilizes LISS adaptively to eliminate the newly
generated stragglers within the job in runtime.

e Squeeze N workers, Swell M workers: Slowing down N workers while speeding up M others. This strategy
is primarily used when there are significant performance disparities among workers within a job. LISS will
be applied to redistribute the input samples among these workers while keeping the total batch size for job
convergence.

Coordination example. Different combinations of primitives are mapped to different underlying support
mechanisms, but this does not imply that the two mechanisms work independently. In fact, during the coordinating
process, these two mechanisms are closely integrated and work together. While one job receives a combination of
primitives, the other packed jobs may receive a different set of primitives, leading to the employment of different
underlying mechanisms.

Figure 5-(a) shows a typical example after relaxing the limitations of conservative packing: three jobs are
packed together on 4 GPUs. In this case, we assume that the interference between Jobs 1 and 2 is significant,
leading to Job 1’s training performance being severely affected. The coordinator needs to accelerate Job 1 for
better cluster efficiency. The coordinator may have two options to coordinate the packed jobs to achieve the best
performance.

Figure 5-(b) shows the first option, which squeezes the workers of Job 2 and swells the workers of Job 1 on
GPUs 0 and 1. Figure 5-(c) shows the second option where we swell the workers of Job 1 on GPUs 0 and 1 and
squeeze the workers of Job 1 on GPUs 2 and 3 while squeezing the workers of Job 2 on GPUs 0 and 1. The two
options both aim to accelerate Job 1. The coordinator can choose the best option based on the runtime metrics
and the current status of the packed jobs.

4.3 Superiority of Calibration

There are two key advantages of the calibration primitives in GIMBAL.

First, the primitives decouple the coordination policy construction from the intricate utilization of underlying
coordination opportunities. The decoupling is essential for GIMBAL, as it aims to provide a generic and scalable
solution of job packing for various schedulers. Different schedulers may have different objectives, and the
calibration primitives allow them to focus on the coordination policy construction without worrying about the
underlying mechanisms.

Second, the primitives allow the coordinator to make fine-grained adjustments to the packed jobs. In this case,
GiMBAL can find the optimal packing configuration by incremental coordination. As the incremental calibration is

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters + 9

Lyob 5] Cyon 5]
New job scheduling New job scheduling
BN E 0 H I BN E e =
o2 [l ob 2] D CNEn Cnon 06D D D 0D 1 em
GPU-0 GPU-1::GPU-2 GPU-3 GPU-4 GPU-5 | GPU-6 GPU-7 GPU-0 GPU-1i GPU-2 GPU-3 i GPU-4 GPU-5 GPU-6 __GPU-7.
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
(a) Violation of topology leading to cascading. (b) Cascading occurs in the optimal topology.

Fig. 6. In unequal packing, cascade effects occur when jobs are interconnected through co-location, leading to one job’s
changes impacting numerous others. Cascade effects arise from two kinds of scheduling decisions. (a) Violation of optimal
topology. (b) The lack of constraints on newly packed jobs.

done on the fly, the coordination overhead is minimal. Moreover, the fine-grained adjustments do not require the
restart of the training jobs. Due to the fact that different schedulers may be designed with varying requirements
for job preemption, the on-the-fly calibration further enhances the flexibility of GIMBAL to adapt to different
schedulers.

5 Coordination of Aggressive Job Packing

GIMBAL is designated to enhance job packing for various schedulers instructed by the calibration primitives. We
now demonstrate how to use the calibration primitives to coordinate workers for different scheduling objectives.
This section is organized as follows. We first discuss the constraints for job packing in §5.1. While GIMBAL relaxes
the conservative job packing, it still adheres to several rules, which are crucial for maintaining the performance
of the training jobs. Schedulers should follow the rules to make job packing decisions, but it is optional since
GIMBAL can sequentially execute the packed jobs that violate the rules. Then, we introduce the coordination
policy in §5.2

5.1 Constraints for Job Packing

There are two constraints for job packing in GIMBAL. Firstly, GIMBAL only allows two job workers to be co-located
on a single GPU, since co-location of more workers does not provide more benefits[23, 34, 50]. Secondly, GIMBAL
add constraints for topological guaranteeing. Without such constraints, job packing may become unbounded. We
demonstrate the necessity of the topology constraints as follows.

Topological guaranteeing. In unequal packing, the absence of constraints on co-location relationships can
initiate a cascading effect among jobs. Specifically, unequal packing leads to a complex interdependency among
jobs, where a perturbation in one job can trigger a ripple of subsequent changes throughout the chain. For
instance, in Figure 6, the scheduling of Job 5 introduces new interference for Job 4, which then sequentially
impacts Job 3, and so on, potentially disrupting all active jobs.

The cascading effects occur when the topological structure of training jobs is overlooked in GPU resource
allocation. As depicted in Figure 6-(a), Job 3 requires 4 GPUs but is incorrectly assigned to 3 nodes, leading to
cascading impacts on all jobs in the cluster. We follow existing works [55] to ensure that the scheduler makes
decisions that adhere to the optimal topology, with each job placed on the theoretically smallest number of nodes.

While optimal topological constraints can avoid the majority of cascade scenarios, instances of overly complex
co-location relationships may persist, as shown in Figure 6-(b). To comprehensively eliminate cascade effects, we
introduce an additional constraint: jobs with a small world size (fewer GPUs) are permitted to co-locate with
another larger job. In this case, the jobs with the same world size only engage in balanced co-location. Figure 7
demonstrates this decision in GIMBAL, where nodes (2, 3, 4, 5) are suitable for scheduling Job 11, while nodes (1,
6) are excluded.

ACM Trans. Arch. Code Optim.

10 « P.Yangetal

New job

[Job 11 [Job 11 | Job 11 | Job 11}

BEE X X X X ElEl

oo 3 o 311 o3 T son 3 T sob 2 Fon 2 | | s] [10§ vob 10 o 10§ dob 10

GPU-0__GPU-1} GPU-2 GPU-3:! GPU-4 GPU-5 GPU-6 _GPU-7. GPU-8 GPUva GPU-10_GPU-11;: GPU-12 GPU-13; | GPU-14 GPU-15.
Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Fig. 7. To prevent cascade effects, job placement must be carefully managed. Since job 3 and job 10 are already co-located
with other jobs, placing job 11 on GPUs (1, 2, 12, 13) would cause cascade effects. Therefore, nodes (1, 6) are excluded. Nodes
(2, 3, 4, 5) remain available, and any two can be chosen.

This constraint ensures that the co-location relationships within the cluster are uniform. All jobs form a series
of job packing sets, each containing a job with the largest world size (denoted as Jy;,,4). This job co-locates with all
other jobs in the set, while the remaining jobs only co-locate with it. GIMBAL’s subsequent policy are constructed
based on this co-location pattern.

5.2 Constructing Coordination Policy

GIMBAL constructs the coordination policy in the following ways. We first define the functions of obtaining
the local objective and the job priority for each job packing set. The local objective aligns with the scheduler’s
objectives. Within each set, GIMBAL iteratively monitors the local objective and generates coordination plans
based on job priority to calibrate the workers.

Defining local objectives and job priority. In GiMBAL, we define the objective functions and job priorities
for the following three scheduling goals.
For JCT, we define the objective function and job priority as follows:

1 RemainingSteps
Local Objective = min oot —— (1)
JobSet.size JeSotset roughput;
Job Priority; = —Utilization; ()

Where RemainingSteps is the number of steps remaining for the job, Throughput is the current throughput of
the job, and Utilization is the GPU utilization of the job. The objective is to minimize the average JCT. Job priority
is determined by the GPU utilization of each job. This prioritization method is chosen because the performance
loss caused by reducing resources for large jobs is often smaller than the performance gain achieved by allocating
the same resources to smaller jobs. For instance, slightly squeezing a large job can still maintain near-optimal
performance, while co-located small jobs can be significantly sped up. Overall, this coordination strategy can
effectively reduce the average JCT.
For deadline-aware, the objective and priorities of jobs are as follows:

RemainingSteps
Local Objective = min max max (0, Deadline; - ————— (3)
J€JobSet Throughput;

RemainingSteps

Job Priority; = Deadline; —)

Throughput;

Where Deadline is the job’s deadline. The objective is to minimize the maximum duration of jobs that exceed
their deadlines. This objective value illustrates the benefits of new calibration during the search process, serving
as a useful indicator for subsequent search strategies. Jobs closer to their deadlines have higher priority, while
those with more headroom have lower priority. This means we will squeeze jobs with longer headroom to

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters « 11

accelerate those with shorter headroom or exceeded deadlines, thus ensuring more jobs meet their deadline
requirements.
For makespan, we define the objective function and job priority as follows:

RemainingSteps 7
Local Objective = min max ——— (5)
JeJobSet Throughput;
RemainingSteps
Job Priority; = — pa————— (6)
Throughput

The objective is to minimize the longest expected duration of the current job set, aiming to achieve the shortest
possible completion time. Job priority is defined by its duration. This means that shorter jobs are squeezed to
speed up the completion of longer jobs, in alignment with the overall objective.

Searching algorithm. As previously mentioned, packed jobs in the cluster form independent job sets. Therefore,
the coordinator only needs to consider the calibration of jobs within a single job set. Algorithm 1 presents the
pseudocode for the GIMBAL coordination searching process over a packed job set.

Algorithm 1 Multi-Job Coordination Search

Function: CoordinationSearch (jobset) Function: GeneratingPrimitives (subset1, Jnax)

1: Jnax = FindJobWithMaxWorldSize(jobset) 11: slow_workers, fast_workers = Jnax.GetWorkers()
2: subset, subset2 = {Jax}, jobset - {Jmax} 12: if slow_workers is 0 then

3: if Priority(subset2) < Priority(subset1) then 13: squeeze(subset1)

4: Swap(subset1, subset2). 14: else

5: swell(subset?) 15: if Jhax € subsetl then

6: while True do 16: swell(slow_workers)

7: GeneratePrimitives(subset1, Jnax) 17: squeeze(fast_workers)

8: Collect runtime info, compute calibration gain. 18: else

9: if Three consecutive unsuccessful attempts then 19: workers = GetColocatedWorker(s1ow_workers)
10: break 20: squeeze(workers)

First, it identifies J,,4x and divides jobs into two subsets based on packing relationships, with subset2 as the
high-priority set (lines 1-4). It then swells high-priority subsets, as jobs with higher priority contribute more
to the scheduling objective (lines 5). Next, primitives are generated and mapped to the underlying mechanism
(line 7), followed by the collection of updated runtime information (line 8). To minimize search duration, an early
exit mechanism terminates the search after three consecutive plans yield no positive gains (lines 9-10). Function
GeneratingPrimitives generates the calibration primitive combinations based on the current runtime information.
It squeezes the low-priority workers. If J;,4x is low-priority and there are stragglers, it simultaneously squeezes
the faster workers to achieve balance (lines 11-20).

The early exit mechanism terminates the search after three consecutive attempts yielding no gains. In a packed
job set, the benefits of gradually squeezing a job initially increase before declining, creating a concave curve, as
shown in Figure 2-(a). Thus, a continuous decline in gains signals that the best result has been achieved, allowing
for an early exit to avoid unnecessary searches. The correctness and effectiveness of this mechanism will be
presented in §7.4.

Searching algorithm complexity. The time complexity of Algorithm 1 is determined by the for loop at line 6.
Each iteration of this loop corresponds to the activation of the underlying mechanism, consisting of mechanism
switching and new runtime data collection. In the mechanism switching phase, for LISS, the switch involves only
parameter changes and incurs no real overhead. In contrast, LGRR introduces additional overhead due to CUDA
context creation and switching. As for collecting runtime information, GIMBAL limits the process to a maximum of
60 seconds or 5 training steps. This ensures that data collection can be completed within a reasonable timeframe,
regardless of job types and resource constraints. It should be noted that collecting new runtime information
should not be considered overhead, as the training process continues uninterrupted.

ACM Trans. Arch. Code Optim.

12 « P.Yangetal

Therefore, when analyzing the time complexity of Algorithm 1, we only need to consider the overhead
introduced by LGRR. Denote the size of the job set as M. In the worst case, each worker’s resources are squeezed
from 100% to 0%, requiring 10 iterations under an LGRR granularity of 10% (§7.4). Since LGRR applies only to
low-priority jobs, at most M — 1 jobs are involved. Moreover, the overhead for each calibration is stable (§7.4).
The time complexity of the Algorithm 1 is O(M).

Other scheduling objectives and more advanced policies. As for other schedulers with job packing, the
cluster maintainer can support their objectives by directly defining the function of the local objective and job
priority. Moreover, our current coordination policy is a greedy one. Maintainers can implement more advanced
policies with the proposed calibration primitives.

6 Implementation

We implement a prototype of GIMBAL using 6700 lines of Python code based on PyTorch [37]: The implementation
breakdown includes 2200 lines for the scheduler, 920 lines for the aggressive packing coordinator, 1500 lines for
the worker calibrator, 1500 lines for supporting mechanisms, and 1000 lines for other runtime components such as
monitoring. GIMBAL builds the CUDA context pool with 500 lines of C++ and integrates it into the framework to
support low-overhead resource restriction. At runtime, we use gRPC [4] to communicate between the scheduler
and the local workers on each server. GIMBAL respects the scheduling manner of the upper scheduler (e.g.,
round-based in Gavel) and monitors the runtime status of training jobs every 30 seconds. Although GIMBAL is
implemented using PyTorch, it does not rely on any PyTorch-specific features. Its supporting mechanisms, such
as LGRR, depend on the NVIDIA Driver API, while LISS can be implemented in major deep learning frameworks
like Tensorflow [6]. This allows GIMBAL’s design to maintain broad compatibility with various machine learning
platforms.

Low-overhead resource restriction through context pool. GimBAL utilizes Nvidia MPS [35] to provide
resource restriction among co-located jobs. Nvidia MPS supports configuring multiple CUDA contexts with
different resource ratios and switches the CUDA contexts for a job accordingly. However, integrating it directly
into PyTorch is challenging. PyTorch currently only supports submitting the kernels to the primary CUDA
context (100% resources). Reconfiguring the resource usage of a training job necessitates restarting the entire job.
To tackle the above limitation, we rewrite the internal management of CUDA contexts and expose an API. This
APT allows GIMBAL to initialize a CUDA context pool with varying resource configurations for calibration. The
context is dynamically created to enable fine-grained resource restriction. Specifically, GIMBAL creates a new
context and releases the old one during switching context for calibration. After calibration, GIMBAL retains only
the chosen context. In this case, the memory overhead of maintaining the context pool is minimal—one extra
CUDA context of 200 MB—since calibration is short and infrequent compared to the overall training process.

Data samplers for stealing input samples. Efficient data re-dispatching, which involves adjusting the local
batch size for each worker within the global batch, is required. GIMBAL extends the native data sampler in PyTorch
to support this mechanism, enabling runtime data re-dispatching for workers. After each stealing operation,
worker calibrators inform the global data sampler of the updated batch size distribution. Subsequently, the sampler
adjusts the data dispatching rules for subsequent iterations. Specifically, we measure the forward computation
latency of each worker to evaluate performance, as backward propagation does not accurately reflect computation
time differences due to synchronous communication.

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters « 13

Table 1. Model and dataset configurations used in experiments.

Model Dataset Batch size
BERT[19] SQUAD[41] 16,32
LLaMA[46] Alpaca[45] 16,32
DeepSpeech2[7] LibriSpeech[36] 8,16
ResNet-50 (RN50)[21] ImageNet[18 32,64,128
MobileNetV3 (MNV3)[22] ImageNet[18 32,64,128
VGG-11[43] ImageNet[18 32,64,128
VGG-16[43] TmageNet[18] 32,64,128
ProxylessNas (PLNAS)[11] ImageNet[18] 32,64,128
Once-for-All (OFA)[10] ImageNet[18] 32,64,128
Resnet-18 (RN18)[21] CIFAR-10[27] 32,64,128
MobileNetV2 (MNV?2)[42] CIFAR-10[27] 32,64,128
EfficientNet (EFN)[44] CIFAR-10[27] 32,64,128

Table 2. Analysis of traces used in end-to-end experiments.

Model size Number of Average number of GPUs Model size Number of Average number of GPUs
jobs per job jobs per job
Small 43 2.39 Small 112 1.98
Medium 86 2.41 Medium 132 2.03
Large 21 4.85 Large 56 3.54
(a) Philly trace. (b) Alibaba Trace

7 Evaluation
7.1 Experimental Setup

Testbed. All experiments are conducted on a cluster with 32 GPUs. Each node in the cluster is equipped with 2
Nvidia A40 GPUs (48GB memory), 48 CPU cores, and 256GB of CPU memory. These nodes are interconnected
using Nvidia Mellanox InfiniBand ConnectX-5. Each node operates on Ubuntu 22.04 with CUDA 11.7 and cuDNN
7 installed. PyTorch 2.0 is used for the experiments.

Workloads. We use 12 representative models with various scales as our workloads. The model details are
listed in Table 1. These workloads are categorized into three types based on their model/dataset size and resource
requirements: (1) Small workloads include RN18, MNV2, and EFN models with the CIFAR-10 dataset; (2) Middle
workloads consist of DeepSpeech2, RN50, MNV3, VGG-11, VGG-16, PLNAS, and OFA models using LibriSpeech
and ImageNet datasets; (3) Large workloads involve LLM models such as BERT (for pre-train) and LLaMA (for
fine-tune) with SQuAD and Alpaca datasets.

Traces. To evaluate GIMBAL performance under different job distributions, we conducted comprehensive
experiments using two real production-level traces: Philly [26] and Alibaba [49]. The experiments included 150
jobs from the Philly trace and 300 jobs from the Alibaba trace. Table 2 presents the trace analysis on the model and
hardware configurations. In the traces, each job record includes submission time, job ID, and duration. Following
prior research [34, 50], we randomly assign model types, GPU requirements, and calculated iteration counts
based on the model’s computation profiles. Meanwhile, we also generate the large workloads to resemble the
longer-term jobs in production scenarios. In addition, job deadlines were generated by multiplying the duration
with A, plus submission time. A ranges randomly from 1.5 to 2.5, aligning with established practices [20].

Baselines and scheduling objectives. There are many works that focus on optimizing the performance of
scheduling deep learning jobs in the cluster. We use the following state-of-the-art systems as baselines.

o Lucid [23]: a state-of-the-art scheduler designed to enhance average JCT. It evaluates the sharing score of jobs
using pre-profiled metrics to decide whether to co-locate them. We use it to conduct the experiments for the
JCT.

ACM Trans. Arch. Code Optim.

14 « P.Yangetal

Baseline Baseline + Gimbal l l Slurm Baseline Baseline + Gimbal
o =
2 110 4.5 9.03 2 233 218
£ e O e
Z 10| 094 £100 7 74 4.01 =9 s I =20
g oz | B o z } E 5200 177 | E LT
<= 7| 2 = =6 ° ! ! 2 !
5 ZiE =Y H £ A
g 05 ‘ g 50 g2 ‘ S 305 B 100 71 £10 ;
g } 5 5 Y =3 7 241 | © } ! s }
= ! =" = [= f f o ! I = f
A f } A f A } g 16
0.0 L2 g olZZr oLt 0 ‘ s 0 iz S ‘
JCT O Deadline Makespan JCT O Deadline Makespan
(a) Philly trace with 150 jobs. (b) Alibaba trace with 300 jobs.

Fig. 8. End-to-end performance in terms of JCT, deadline satisfied ratio, and overall makespan. For these metrics, Baseline
refers to Lucid, Gandiva, and Gavel, respectively.

Slurm — Lucid — Lucid + Gimbal ‘

812 100 _100
215 B S
5 2z 75 Z 75
s £ £ 2
£ 5 50 5 50 v
g2 a0 & s £ 2 S7 ’ 4
& |043026 VA 8 2 \

0Pty Alibaba = 0 2 T Tme) — 0 5 10 15 Time (h)
(a) Average queuing time. (b) CDF of JCT with Philly trace. (¢) CDF of JCT with Alibaba trace.

Fig.9. In-depth analysis of JCT-oriented evaluation in terms of JCT distribution, average queuing time, and cluster throughput.

e Gandiva [50]: a First-Come-First-Serve (FCFS) scheduler that utilizes domain-specific knowledge to intro-
spectively co-locate jobs based on runtime profiling and heuristic packing. We extend it to support the
deadline-aware feature.

e Gavel [34]: a scheduler capable of accommodating diverse scheduling objectives by formulating and solving
optimization problems. We select the makespan minimization as the scheduling policy in the experiments.

These baselines enhance resource utilization through job packing and are designed with specific scheduling
objectives, leading to better performance compared to traditional deep learning schedulers, such as Slurm [5].
However, to provide a more comprehensive comparison, we also include Slurm in our evaluation under the
Alibaba trace.

Methodology. We integrate GIMBAL into the aforementioned schedulers and demonstrate its effectiveness
by quantifying the performance improvement achieved after enabling GimBaL. To provide a comprehensive
assessment of the enhancement, we evaluate the specific performance metrics targeted by each baseline scheduler:
Lucid for JCT performance, Gandiva for deadline satisfied ratio[20], and Gavel for makespan.

Since the baseline schedulers are limited by the conservative nature of job packing, directly integrating into
the schedulers could not unleash the potential of GiMBAL. Therefore, while the baseline system operates in an
original way, the scheduler enhanced with GimBAL is relaxed for more aggressive packing decisions. Detailed
discussion for each baseline is demonstrated in §7.2.

7.2 End-to-end Performance
We evaluate the end-to-end performance of GIMBAL on the 32-GPU physical testbed with a 150-job trace from
Microsoft Philly trace and a 300-job trace from the Alibaba trace..

JCT. The original Lucid calculates a sharing score for each possible job packing combination based on the job
metrics profiled offline. Based on this sharing score, it decides whether to co-locate the jobs. As for the enhanced
Lucid with GimBAL, we adjust the score threshold to enable more aggressive job packing. Meanwhile, the original

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters « 15

— Gandiva — Gandiva + Gimbal |
75 69 100[94 29 %
5 3] 5 |71 73| 5 600
<50 7] < |7 7 =3 /
g ‘ E |/ 77| 5 '400
g2 |2730 w g 50| /) Z H
!
807 2% wul® 97 99 By E™
o ‘ 717, ol 22] 21 E =
Small Medium Large Small Medium Large (1] 9k 18k 27k Time (s)
(a) The number of completed (b) The number of completed (c) Cluster Throughput under
jobs under Philly trace. jobs under Alibaba trace. Alibaba trace.

Fig. 10. In-depth analysis of deadline-oriented evaluation in terms of the number of completed jobs and cluster throughput.

Lucid does not support the job packing with different GPU numbers. We also remove this restriction for the
enhanced Lucid.

As shown in Figure 8, the enhanced Lucid with GIMBAL reduces the average JCT by 1.28%X and 1.26X on the
Philly trace and Alibaba trace, respectively, compared to the original Lucid. Compared to Slurm, the enhanced
Lucid with GIMBAL achieves a 3.75X reduction in average JCT on the Alibaba trace. This improvement can
be attributed to the fine-grained worker calibration from GimBaL. Although unequal packing and aggressive
co-location may bring severe interference and straggler, GIMBAL could minimize the interference and eliminate
the straggler to improve the system performance.

Figure 9 presents a detailed analysis of the source of improvement. In Figure 9-(a), the average queue time for
all jobs is evaluated, showing that, compared to the baseline, enabling GIMBAL reduces the average queue time by
1.87% on the Philly trace and 1.51x on Alibaba trrace (reduces 5.8x compared with Slurm). As the JCT of jobs
decreases, the queuing time for jobs is also mitigated. In Figure 9-(b) and (c) show the CDF distribution of job
JCT for Philly and Alibaba trace, demonstrating that the enhancement primarily benefits long-term jobs. This
is because Lucid schedules jobs based on a short-job-first approach, but its decisions are overly conservative,
causing long-term jobs to wait. GIMBAL, on the other hand, can perform more aggressive packing, reducing the
queuing time while ensuring that the performance of short-term jobs is not compromised through fine-grained
control of packed jobs.

Deadline-aware. The original Gandiva first makes the job packing decision and collects the runtime metrics
to check whether to reschedule the jobs. The original Gandiva does not support the job packing with different
GPU numbers. We remove this restriction for the enhanced Gandiva with GIMBAL.

Figure 8 illustrates that the enhanced Gandiva with GIMBAL completes 110 out of 150 jobs in the Philly trace,
whereas the original Gandiva completes only 90 jobs. In the Alibaba trace, GIMBAL accomplished 233 jobs, while
the original Gandiva completed just 177 jobs, and the Slurm only finished 16 jobs due to its lack of support for
deadline-aware scheduling. This represents a 1.22X and 1.32X increase in the job completion ratio for the Philly
and Alibaba traces, respectively, over the same period. This improvement stems from GIMBAL’s ability to adjust
resources dynamically. For jobs with strict deadlines, GIMBAL supports restricting resource usage by another job
at co-location. In contrast, the baseline system could not find such a co-location opportunity due to the lack of
fine-grained resource management, which resulted in queued jobs awaiting scheduling.

Figure 10 offers further insights into why GimBAL improves the deadline satisfaction ratio. In Figure 10-(a) and
(b), it is evident that the enhanced Gandiva completes more jobs across three job types under Phiily and Alibaba
trace. Meantime, Figure 10-(c) indicates that the enhanced Gandiva achieves higher cluster throughput, allowing
more jobs to meet their deadline requirements. These improvements are all attributed to the more job packing
opportunities and fine-grained resource adjustment brought by GimBAL.

Makespan. The original Gavel first makes the job packing decision using the optimization problems. Then, it
schedules the highest-priority job pairs in a round-robin manner and continuously updates the priorities of all

ACM Trans. Arch. Code Optim.

16 « P.Yangetal.

Slurm — Lucid — Lucid + Gimbal
800 _
R 2
§ 600 g
é 400 é
) {)
g 2% \ E
£ o L n] &
5k 75k
Time (s) Time (s)

(a) Cluster Throughput under Philly trace. (b) Cluster Throughput under Alibaba trace.

Fig. 11. In-depth analysis of makespan-oriented evaluation in terms of cluster throughput.

Baseline Baseline + Unequal Packing Baseline + LISS

N Baseline + LGRR Baseline + Gimbal
g 20 1631'76 1111131'23 1.11 113

: \ 1L 11 111 L
£ s - NN Lol 1o Lo4 NN 10 10101\\ N
g 10 1.05 118 w Lo 109 \ ' ’ \
g \ 7 \ 05 0.5 N
= 0NN | 2%
S \ / \ 7
Z 0.0 0.01Z4 0.0
Queueing Time Deadline Satisfied Ratio Makespan
(a) Lucid for JCT. (b) Gandiva for deadline-aware. (c) Gavel for makespan.

Fig. 12. Ablation study on (1) unequal packing, (2) low-level GPU resource restriction (LGRR), and (3) lossless input sample
stealing (LISS).

job pairs. Meantime, the original Gavel also does not support the job packing with different GPU numbers. We
remove this restriction for the enhanced Gavel with GIMBAL.

As shown in Figure 8, under the Philly trace, the original Gavel system takes 4.5 hours to complete all 150
jobs, while under the Alibaba trace, it takes 17.6 hours to complete 300 jobs. The enhanced Gavel with GimBAL
reduces this time to 4.05 hours and 15.9 hours, respectively, resulting in a 1.12X and 1.1X enhancement for the
overall makespan. Additionally, Figure 11 demonstrates that the enhanced Gavel could increase the peak cluster
throughput, allowing for the jobs to complete computations in less time.

GiMBAL shows a relatively modest improvement over the baseline in terms of makespan, especially when
compared with other scheduling objectives. This can be attributed to two main reasons. In high-load clusters,
utilization is already near its maximum, which makes further improvements to the makespan challenging. For
example, Lucid’s original makespan improvement is limited to 1.09%, while Gavel’s is capped at 1.2X. Second, the
primary limitation arises from Gavel’s frequent rescheduling. This reduces opportunities for unequal packing,
thereby limiting the effectiveness of LISS within GiMBAL. Notably, a modest decrease in makespan can significantly
reduce cluster operating costs by shortening overall runtime, especially in larger clusters.

7.3 Ablation Study

We perform the ablation study for the two mechanisms introduced by GimBAL on the 16-GPU physical testbed
with a 100-job trace from Microsoft Philly trace.

Unequal packing. We first evaluate the impact of integrating unequal packing directly into the baseline
schedulers. As shown in Figure 12, the integration of unequal packing led to a 1.05x improvement in JCT (with
queuing time enhancement by 1.09X), a 1.04X improvement in meeting deadlines, and a 1.01X improvement
in makespan compared to the baseline. Although the unequal packing brings the straggler worker for the
training job, it does not always bring a negative effect on the job. This is because the job co-location could gain

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters « 17

Table 3. Representive job combinations used in the evaluation of calibration duration.

ID Combinations

JC1 MobileNet_V2 (4GPUs) + EfficientNet (2GPUs) + ResNet-18 (2GPUs)

JjC2 MobileNet_V2 (4GPUs) + EfficientNet (2GPUs) + VGG-11 (2GPUs)

JjC3 ResNet-50 (4GPUs) + EfficientNet (2GPUs) + MobileNet_V2 (2GPUs)

JC4 ResNet-50 (4GPUs) + EfficientNet(2GPUs) + VGG-11 (2GPUs)

JC5 ResNet-50 (4GPUs)+ VGG-11 (2GPUs) + BERT (2GPUs)

JCe LLaMA (8GPUs) + EfficientNet (4GPUs) + Mobilenet_v2 (4GPUs)

jc7 LLaMA (8GPUs) + ResNet-50 (4GPUs) + EfficientNet (4GPUs)

Jjcs LLaMA (8GPUs) + ResNet-50(4GPUs) + VGG-11 (4GPUs)

| Gran. = 2% Gran. = 5% Gran. = 10% Gran. = 20% Gran. = 30%
31.53 k= Ll
= 30 g 11 1.07
g o 1.051.05 /1.05
g sl 209 2 Lo 103 103 103777
= > 1.02 7
= 200 Z 8 . 10 1.0 Y. U %1.0”
e % E 1.0 t-#7## ? A 4% /
b1 10.59
§ 10 . go-o‘;” 615, | E é % % %
2.1 2.73, ; =] 2
oGz G s %21 29 % %%
JC2 ICS JC7 JC2 IC5 JC7
a) Time to search for the optimal configuration. b) Normalized average JCT.

Fig. 13. The three different job combinations under various search granularities: (a) the time required to search for the best
performance, (b) the overall average JCT.

performance throughput. Therefore, these systems with unequal packing obtain tiny improvements. These results
are consistent with those in §2.2.

Lossless input sample stealing. After integrating the unequal packing, we further enable the lossless input
sample stealing mechanism for all the systems. As depicted in Figure 12, this mechanism yielded a 1.18x
improvement in JCT (accompanied by a 1.54X improvement in queuing time), a 1.11X increase in the number of
jobs meeting their deadlines, and a 1.1X enhancement in makespan. These improvements are largely attributed
to the migration of batch sizes, which helps mitigate slowdown issues associated with unequal packing.

Low-level GPU resource restriction. Furthermore, we add the low-level GPU resource restriction mechanism
in addition to the above two modules. As depicted in Figure 12, compared to the baseline, there is a 1.28%
improvement in JCT (with a 1.63X improvement in queuing time), a 1.13X increase in the ratio of satisfied
deadlines, and a 1.11X improvement in makespan. These improvements are attributed to the mechanism’s ability
to allocate resources more effectively for packed jobs based on scheduling objectives.

7.4 Coordination Analysis

In this section, we will discuss the hyperparameters in GIMBAL’s coordination algorithm, along with its search
complexity. To this end, we carefully selected several representative job combinations. As shown in Table 3, these

pairs nearly encompass all types of co-located workloads. We use JCT as the scheduling objective for evaluation
and analysis.

Impact of different LGRR granularity. To explore the impact of different LGRR granularities (MPS resource
percentages), we test three representative job combinations from Table 3: JC2, JC5, and JC7 with varied LGRR
granularity. Figure 13 illustrates the corresponding results and the results of other job combinations align with
this trend.

ACM Trans. Arch. Code Optim.

18 « P.Yangetal

60 |- LGRR
@ - LISS
§40
g . . o o
A 20
0

JCr Jc2 JCc3 Jjc4 JCs Jc6 JC7 0 JC8
Fig. 14. Duration of LISS and LGRR for one search iteration.

| with early exit without early exit |
2k /
600 _ 7 2‘
2 400 v 7 | 7 7
2 7 Y S| 74 ¢ IR
£ 7 7 S\ / N
= 200 A/ 7/ = |97 / v i
a B ’ B R/ Aa o 7 / /Y W
p aVla zl 7 /A 4 6/ s 0 / /‘ 4 4 ﬂ /
JC1 JC2 JC3 JC4 JCS5 JC6 JC7 IC8 JC1 JC2 JC3 JC4 JC5 JC6 JCT JC8
(a) Searching duration w/o early exit. (b) Average JCT w/o early exit.

Fig. 15. Search duration and average JCT of job combinations w/wo early exit mechanism

Setting a small granularity enables more precise configurations but leads to excessive search steps, increasing
total overhead and degrading overall performance, as demonstrated by JC2 and JC7 in Figure 13-(b). Conversely,
overly large granularity can miss optimal points, such as a 30% in JC2 or 20% setting in JC7. Therefore, a granularity
of 10% strikes a balance, reducing overhead while ensuring optimal performance points are not missed.

Duration of a single calibration iteration. We first investigate the effectiveness of Algorithm 1 by exploring
the time for each calibration iteration with different mechanisms. Specifically, we test various job combinations
with both LISS and LGRR applied to J.x (the first job). Figure 14 illustrates the total time per iteration for
different job combinations under both mechanisms. It can be observed that the average duration for one iteration
of LISS is 9 seconds, while LGRR averages 39 seconds. The longer duration for JC6, JC7, and JC8 is due to the
involvement of LLaMA, a large model with relatively low training throughput, resulting in longer times for both
mechanism switching and runtime information collection.

Analysis of real overhead and algorithm complexity. The above describes the total time for a single
iteration. As mentioned in (§5.2), this includes the time for mechanism switching and runtime information
collection, with overhead occurring only during LGRR switching. We test the overhead of LGRR mechanism
switching across all benchmarks under various resource restrictions. The results show that the average overhead
for switching once is 3:6 seconds. Moreover, it is very stable across all benchmarks, since workers are switching
CUDA contexts in parallel.

Let M represent the number of jobs in a job set. As discussed in §5.2, in the worst-case scenario, Algorithm 1
requires 10X (M —1) iterations. Therefore, the total overhead during the search process is 3.6 X 10X (M —1) seconds.
It is evident that the overall search time and overhead are directly proportional to the number of jobs being
packed.

When M is large enough, the benefits of the search may be outweighed by the overhead, leading to no net
gains. In our end-to-end experiments, the maximum value of M observed is 5, under which GimBAL achieves the
noted performance improvements. Therefore, when designing the upper-level scheduler with unequal packing, it
is essential to set appropriate limits on the number of jobs in a job set, guided by practical considerations.

ACM Trans. Arch. Code Optim.

Taming Flexible Job Packing in Deep Learning Training Clusters « 19

The effectiveness and correctness of early exit. Figure 15-(a) shows the time required to complete the
search with and without the early exit mechanism. It can be observed that a complete search averages 480 seconds,
while with early exit, this duration is reduced to 250 seconds, a decrease of 48%. Figure 15-(b) further evaluates
the rationale behind the early exit mechanism, which should not significantly compromise the optimality of
the searched restriction scheme. It is observed that with early exit, GIMBAL achieves 99.4 % JCT performance
compared to a full search.

This is because, in most cases, the benefits of conducting resource restriction schemes exhibit a convex trend,
as shown in Figure 2-(a). The early exit mechanism’s ability to quickly identify optimal performance points and
terminate unnecessary searches.

8 Related Work

Packing training jobs for better utilization. Many DL training schedulers [23, 34, 50, 51] aim to enhance
GPU resource utilization through job packing. Gandiva [50] leverages online profiling information to greedily
pack jobs on underutilized GPUs. Gavel [34] evaluates all candidate job pairs and employs an optimization
approach to determine the optimal co-location. Lucid [23] packs jobs based on offline-profiled job scores. While
they allow equal packing of packed jobs, GIMBAL further expands the searching space by introducing unequal
packing, and eliminates the performance stragglers through on-the-fly calibration.

Towards various scheduling objectives. Many existing schedulers are tailored to a singular scheduling
objective. Synergy [33] prioritizes the optimization of JCT. ElasticFlow [20] targets maximizing the number of jobs
that satisfy their deadline requirements. Gandiva,;, [12] is dedicated to ensuring fairness and overall efficiency
on heterogeneous clusters. GIMBAL aligns with the objectives of the upper schedulers, further optimizing their
scheduling decisions via calibration mechanisms.

Adaptive scheduling of training jobs. Many schedulers adaptively modify job hyperparameters to achieve
performant scheduling objectives. Pollux [40] modifies batch size to unify metric modeling with resource
scheduling for co-optimization. KungFu [30] supports user-defined policies that adjust hyperparameters based
on runtime metrics. ONES [8] employs evolutionary algorithms to determine the optimal batch size for each job
based on runtime execution. In contrast to them, GIMBAL only employs non-intrusive optimizations and therefore
provides a strict guarantee that the model convergence is not affected.

Other schedulers. Some schedulers focus specifically on host-side resource management for deep learning
jobs. For instance, SiloD [54] identifies cache and remote I/O as critical scheduling factors, and Synergy [33]
enhances job efficiency through adaptive CPU and memory management. In GIMBAL, we assume ample CPU
resources and use local disk storage for training purposes. In the future, we plan to integrate the insights gained
from these approaches into-GIMBAL.

There are also many schedulers designed for traditional CPU jobs. Pegasus [2] is a workflow management system
designed for complex scientific computations. Slearn [24] estimates the whole job’s runtime properties based
on a few sampled tasks. Hyungro Lee et al., 2024 [28] propose using data flow analysis to identify performance
bottlenecks and opportunities for improvement. These works are orthogonal to GIMBAL. Moreover, distributed
DL training jobs typically run on GPUs in an SPMD (single process multiple data) mode. This setup makes
performance estimation challenging, requiring offline or online profiling. GIMBAL incorporates runtime profiling
during coordination to monitor training performance.

Co-location of workloads Many researches focus on co-locating multiple applications on the same hardware.
Co-location on CPUs has been studied in various contexts [15, 29, 38]. Heracles [29] proposed to co-locate
latency-critical (LC) and best-effort (BE) jobs on the same server to improve resource utilization. It leverages
offline profiled data and runtime monitoring proactively to avoid SLO (Service Level Objective) violations of

ACM Trans. Arch. Code Optim.

20 .+ P.Yangetal.

LC jobs. PARTIES [15] further analyses the sensitivity of various LC services to system-shared resources for
co-location. There are also works that focus on co-locating jobs on GPUs [14, 17, 53]. They are designed for
different scenarios with latency-sensitive applications, such as deep learning inferences, cloud gaming, etc.
GiMBAL draws insights from the research above and tailors the co-location mechanism for deep learning training
jobs, that are long-running and throughput-sensitive.

9 Conclusion

In this paper, we identify the root cause of job packing’s conservative nature as the scope and granularity
mismatch between job packing and cluster scheduling. We propose GIMBAL, a novel job-packing middleware that
locally and fine-grainedly coordinates the workers of packed jobs. The key of GIMBAL is the calibration primitives,
which adjust workers’ execution status incrementally to achieve optimal packing efficiency. The primitives let
cluster maintainers implement coordination policies of job packing for various dedicated DL schedulers without
caring about complex resources and job management. The schedulers can aggressively select appropriate jobs
for packing while leaving the tapping of job-packing potential to GIMBAL. Our evaluation shows GIMBAL can
enhance the efficiency of popular schedulers by up to 1.32x.

Acknowledgments

This work is partially sponsored by the National Key Research and Development Program of China (2023YFB3001504),
the National Natural Science Foundation of China (62302302, 62232011), and Natural Science Foundation of
Shanghai Municipality (24ZR1430500). Quan Chen is the corresponding author.

References

[1] 2017. Nvidia Volta Architecture. https://www.nvidia.com/en-us/data-center/volta- gpu-architecture/.

] 2019. Pegasus: Makes the Work Flow. https://pegasus.isi.edu/.

] 2020. Nvidia Ampere Architecture. https://www.nvidia.com/en-us/data-center/ampere-architecture/.
[4] 2023. gRPC: An RPC library and framework. https://grpc.io.

] 2024. Slurm workload manager. https://slurm.schedmd.com/documentation.html.

] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. 2016. {TensorFlow }: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16). 265-283.

[7] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Qiang Cheng, Guoliang Chen, et al. 2016. Deep speech 2: End-to-end speech recognition in english and mandarin. In International
conference on machine learning. PMLR, 173-182.

[8] Zhengda Bian, Shenggui Li, Wei Wang, and Yang You. 2021. Online evolutionary batch size orchestration for scheduling deep
learning workloads in GPU clusters (SC 21). Association for Computing Machinery, New York, NY, USA, Article 100, 15 pages.
doi:10.1145/3458817.3480859

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33
(2020), 1877-1901.

[10] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once for All: Train One Network and Specialize it for
Efficient Deployment. In International Conference on Learning Representations. https://arxiv.org/pdf/1908.09791.pdf

[11] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. In
International Conference on Learning Representations. https://arxiv.org/pdf/1812.00332.pdf

[12] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. 2020. Balancing efficiency
and fairness in heterogeneous GPU clusters for deep learning. In Proceedings of the Fifteenth European Conference on Computer Systems.
1-16.

[13] Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li. 2020. Semi-dynamic load balancing: Efficient distributed learning in
non-dedicated environments. In Proceedings of the 11th ACM Symposium on Cloud Computing. 431-446.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: Qos awareness and increased utilization for non-preemptive
accelerators in warehouse scale computers. ACM SIGPLAN Notices 51, 4 (2016), 681-696.

ACM Trans. Arch. Code Optim.

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://pegasus.isi.edu/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://grpc.io
https://slurm.schedmd.com/documentation.html
https://doi.org/10.1145/3458817.3480859
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1812.00332.pdf

(15]

[16]

(17]

(18]
(19]

[20]

[21]

[22]

(23]

(30]

(31]
(32]

(33]

(34]

(35]

Taming Flexible Job Packing in Deep Learning Training Clusters « 21

Shuang Chen, Christina Delimitrou, and José F. Martinez. 2019. PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive
Services. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 107-120. doi:10.1145/3297858.
3304005

NVIDIA Corporation. 2023. NVIDIA Multi-Instance GPU User Guide. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.
html Accessed: 2024-06-23.

Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng, Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo.
2021. Enable simultaneous DNN services based on deterministic operator overlap and precise latency prediction. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for
Computing Machinery, New York, NY, USA, Article 15, 15 pages. doi:10.1145/3458817.3476143

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition. leee, 248-255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong, Zhenhua Han, Peng Cheng, Fan Yang, Gang Huang, Xin Jin, and Xuanzhe Liu.
2023. ElasticFlow: An Elastic Serverless Training Platform for Distributed Deep Learning. In Proceedings of the 28th. ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 266-280.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 770-778. doi:10.1109/CVPR.2016.90

Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, Yukun Zhu,
Ruoming Pang, Hartwig Adam, and Quoc Le. 2019. Searching for MobileNetV3. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). 1314-1324. doi:10.1109/ICCV.2019.00140

Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2023. Lucid: A Non-intrusive, Scalable and Interpretable
Scheduler for Deep Learning Training Jobs. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 457-472.

Akshay Jajoo, Y. Charlie Hu, Xiaojun Lin, and Nan Deng. 2022. A Case for Task Sampling based Learning for Cluster Job Scheduling.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA, 19-33.
https://www.usenix.org/conference/nsdi22/presentation/jajoo

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick Qiao, Zhihao Jia, and Gregory R Ganger. 2023. Sia: Heterogeneity-aware,
goodput-optimized ML-cluster scheduling. In Proceedings of the 29th Symposium on Operating Systems Principles. 642—657.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX
Association, Renton, WA, 947-960. https://www.usenix.org/conference/atc19/presentation/jeon

Alex Krizhevsky. 2023. The CIFAR10 Dataset. https://cs.toronto.edu/~kriz/cifarhtml.

Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan Tallent, Anthony Kougkas, and Xian-He Sun. 2023. Data Flow Lifecycles
for Optimizing Workflow Coordination. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, CO, USA) (SC "23). Association for Computing Machinery, New York, NY, USA, Article 58, 15 pages.
doi:10.1145/3581784.3607104

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2015. Heracles: improving resource
efficiency at scale. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (Portland, Oregon) (ISCA ’15).
Association for Computing Machinery, New York, NY, USA, 450-462. doi:10.1145/2749469.2749475

Luo Mai, Guo Li, Marcel Wagenldnder, Konstantinos Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch. 2020. KungFu: Making
Training in Distributed Machine Learning Adaptive. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, 937-954. https://www.usenix.org/conference/osdi20/presentation/mai

Meta. 2024. Building Meta’s GenAl infrastructure. https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-
genai-infrastructure/ Accessed: 2024-06-23.

Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chidambaram. 2022. Looking beyond GPUs for DNN scheduling
on Multi-Tenant clusters. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). 579-596.

Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling
on Multi-Tenant Clusters. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 579-596. https://www.usenix.org/conference/osdi22/presentation/mohan

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee, and Matei Zaharia. 2020. Heterogeneity-aware
cluster scheduling policies for deep learning workloads. In Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation. 481-498.

NVIDIA Corporation. 2023. NVIDIA Multi-Process Service Documentation. https://docs.nvidia.com/deploy/mps/ Accessed: 2024-06-23.

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://doi.org/10.1145/3458817.3476143
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2019.00140
https://www.usenix.org/conference/nsdi22/presentation/jajoo
https://www.usenix.org/conference/atc19/presentation/jeon
https://cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1145/3581784.3607104
https://doi.org/10.1145/2749469.2749475
https://www.usenix.org/conference/osdi20/presentation/mai
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://www.usenix.org/conference/osdi22/presentation/mohan
https://docs.nvidia.com/deploy/mps/

22

(36]

(37]

(38]

(39

—

[40]

[41

—

[42]
(43]

[44

[l

(45]

(46]

(47]

(48]

[49]

(50]

[51]

[52

—

(53]

(54]

(55]

« P.Yangetal.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Librispeech: An ASR corpus based on public domain
audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 5206-5210. doi:10.1109/ICASSP.
2015.7178964

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. arXiv preprint arXiv:1912.01703 (2019).

Tirthak Patel and Devesh Tiwari. 2020. CLITE: Efficient and QoS-Aware Co-Location of Multiple Latency-Critical Jobs for Warehouse
Scale Computers. In 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). 193-206. doi:10.1109/
HPCA47549.2020.00025

Princeton University. 2024. Princeton invests in new 300-GPU cluster for academic Al research. https://ai.princeton.edu/news/2024/
princeton-invests-new-300-gpu-cluster-academic-ai-research Accessed: 2023-10-12.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gregory R Ganger, and Eric P
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning.. In OSDI, Vol. 21. 1-18.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250 (2016).

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4510~4520. doi:10.1109/CVPR.2018.00474
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the
36th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.). PMLR, 6105-6114. https://proceedings.mlr.press/v97/tan19a.html

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023.
Stanford Alpaca: An Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Roziére, Naman
Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971
(2023).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).
Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang; Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS
in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In 19th { USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 22).

Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang, Xiaochuan Tang, Guodong Yang, and Liping Zhang. 2023. Beware of Fragmentation:
Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent. In 2023 USENIX Annual Technical Conference (USENIX ATC
23). USENIX Association, Boston, MA, 995-1008. https://www.usenix.org/conference/atc23/presentation/weng

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. 2018. Gandiva: Introspective cluster scheduling for deep learning. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 595-610.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangging Jia. 2020. AntMan: Dynamic
Scaling on GPU Clusters for Deep Learning.. In OSDL 533-548.

Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday, Richard Harper, and Peter Garraghan. 2021. Horus: Interference-aware
and prediction-based scheduling in deep learning systems. IEEE Transactions on Parallel and Distributed Systems 33, 1 (2021), 88-100.
Wei Zhang, Binghao Chen, Zhenhua Han, Quan Chen, Peng Cheng, Fan Yang, Ran Shu, Yuging Yang, and Minyi Guo. 2022. PilotFish:
Harvesting Free Cycles of Cloud Gaming with Deep Learning Training. In 2022 USENIX Annual Technical Conference (USENLX ATC 22).
USENIX Association, Carlsbad, CA, 217-232. https://www.usenix.org/conference/atc22/presentation/zhang-wei

Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Mingxia Li, Fan Yang, Qianxi Zhang, Binyang Li, Yuqing Yang, Lili Qiu, Lintao
Zhang, and Lidong Zhou. 2023. SiloD: A Co-design of Caching and Scheduling for Deep Learning Clusters. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys °23). Association for Computing Machinery, New York, NY,
USA, 883-898. do0i:10.1145/3552326.3567499

Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou, Mao Yang, Francis CM Lau, Yuqi Wang, Yifan Xiong,
et al. 2020. HiveD: Sharing a GPU cluster for deep learning with guarantees. In Proceedings of the 14th USENIX Conference on Operating
Systems Design and Implementation. 515-532.

Received 10 July 2024; revised 5 November 2024; accepted 21 December 2024

ACM Trans. Arch. Code Optim.

https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/HPCA47549.2020.00025
https://doi.org/10.1109/HPCA47549.2020.00025
https://ai.princeton.edu/news/2024/princeton-invests-new-300-gpu-cluster-academic-ai-research
https://ai.princeton.edu/news/2024/princeton-invests-new-300-gpu-cluster-academic-ai-research
https://doi.org/10.1109/CVPR.2018.00474
https://proceedings.mlr.press/v97/tan19a.html
https://github.com/tatsu-lab/stanford_alpaca
https://www.usenix.org/conference/atc23/presentation/weng
https://www.usenix.org/conference/atc22/presentation/zhang-wei
https://doi.org/10.1145/3552326.3567499

	Abstract
	1 Introduction
	2 Background and Motivatioin
	2.1 Scheduling In Cluster for Deep Learning
	2.2 Untapped Potential in Conservative Job Packing
	2.3 Scope and Granularity Mismatch between Scheduling and Packing

	3 Architecture Overview
	4 Calibration of Job Packing
	4.1 Calibration Primitives and Mechanisms
	4.2 Applying Coordination Plan through Calibration
	4.3 Superiority of Calibration

	5 Coordination of Aggressive Job Packing
	5.1 Constraints for Job Packing
	5.2 Constructing Coordination Policy

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-end Performance
	7.3 Ablation Study
	7.4 Coordination Analysis

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

