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Integrating GPUs into serverless computing platforms is crucial for improving efficiency. Many GPU functions,
such as DNN inferences and scientific services, benefit from GPU usage, which requires only tens to hundreds
of milliseconds for pure computation. Under these circumstances, fast data loading is imperative for function
performance. However, existing GPU serverless systems face significant data stall issues, leading to extremely
low GPU efficiency.

Faced with the above problems, we observe opportunities to optimize data loading, such as data preloading
and deduplicated data loading. However, these optimizations are impossible in existing GPU serverless systems
due to the lack of insights into data information, such as data sizes and read-write attributes of function
inputs. To address this, we propose a novel GPU serverless system, EDAS. EDAS first enhances user request
specifications, allowing users to annotate data retrieved by GPU functions from the database with additional
attributes. Based on this, EDAS takes over data loading from GPU functions and proposes two innovative data
loading management schemes: a parallelized data loading scheme and a multi-stage resource exit scheme. Our
experimental results show that EDAS reduces function duration by 16.2x and improves system throughput by
1.91x compared to the state-of-the-art serverless platform.
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1 INTRODUCTION

Emerging cloud computing services, such as image processing [30] and medical testing [45], rely
on GPUs for computation. These cloud services often experience unstable loads, which may only
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Fig. 1. Workflow of FixedGSL (instance-fixed GPU serverless computing mode).

a few to dozens of user requests per minute. In this scenario, a traditional GPU-based inference
system [15, 16, 29, 32] will encounter inefficiencies because it needs to reserve GPU resources all
the time. Faced with this problem, serverless computing [5, 21, 34] has been proven efficient for
handling relatively low loads using only CPUs.

Some cloud providers, such as Alibaba Function Compute [3] and Azure Function [5], have also
made efforts to integrate GPUs into serverless systems. Existing systems all adopt an instance-fixed
GPU serverless computing mode (denoted by FixedGSL in Figure 1). When a GPU function is
triggered by a user request, the system allocates a fixed size of GPU resources to it, such as 1/24 A10
GPU (1GB memory usage granularity and corresponding time slices). After the resource allocation,
the system hands over data loading and function computation to the GPU function.

Since GPUs are used to accelerate computation, many GPU functions (such as DNN inference [27]
and scientific services [45]) only consume tens to hundreds of milliseconds for pure computation.
Under these circumstances, fast data loading is imperative for GPU function performance. However,
we observe that existing GPU serverless systems face significant data stall issues, which lead to
very low GPU efficiency.

On one hand, existing GPU serverless systems require every GPU function to create a GPU
context before the actual data loading into GPUs. It significantly blocks the data preparation when
launching a GPU function, even when the data to load is known before GPU context is ready (e.g.,
model weight). Our experiments in §3.2.1 reveal that GPU context creation requires around 100
milliseconds, leading to a long stall to actual data loading and computation.

On the other hand, all GPU functions need to load data to CPU memory over the network and
load data to GPU memory via PCle. They inevitably encounter network and PCle contention.
Experimental results in §3.2.2 show that GPU functions, on average, suffer from 6.1x longer data
loading times in shared clusters compared with solo-runs. Moreover, the popularity of Large Lan-
guage Models (LLMs) brings heavier transfer requirements, further exacerbating these contentions.
Meanwhile, the prolonged loading time results in extended resource occupation without GPU
computation, which also leads to a low function throughput.

Faced with the above problems, we observe opportunities to optimize data loading, such as data
preloading and deduplicated data loading. Specifically, a serverless system could perform actual
data loading before the GPU context is created. The parallelization of these two stages then speeds
up the overall data loading. Also, many services have read-only data, such as weights in DNN
inference [18, 27] and parameters in scientific computing [45]. Enabling read-only data sharing
among multiple requests of a GPU function could eliminate repetitive data loading, alleviating
network and PCle contention.
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However, these optimizations are impossible in existing GPU serverless systems due to the lack
of insights into data required by GPU functions. For example, data preloading and deduplicated
data loading require data positions, data sizes, and read-write attributes of the function inputs,
which are unknown in existing systems that treat GPU functions as black boxes. Furthermore, even
when data can be preloaded, it is still difficult to map the prepared data to the GPU functions due
to the unknown linkage.

To this end, we propose a novel GPU serverless system, EDAS. EDAS first designs an enhanced
request specification and two data access interfaces for GPU functions developed from scratch.
These interfaces enable the system to take over data loading. For domain-specific functions relying
on specific frameworks (such as PyTorch), EDAS provides an automated conversion tool to leverage
this design.

Specifically, we allow developers to annotate data retrieved by these functions from the database
with additional attributes, such as input data size and read/write properties (read-only or writable).
Once these data attributes are exposed, EDAS proposes a unified memory daemon and a set of
data access interfaces, namely (EdasLoadToGPU() & EdasDumpToDB()), to facilitate GPU function
programming. Using these interfaces, the memory daemon takes over the actual data transfer
and establishes linkages between data and the launched GPU functions. EDAS then proactively
optimizes data loading for GPU functions by using the data attributes in the enhanced user request.

Two primary optimization schemes are implemented to boost the startup of GPU functions. First,
using the attribute of data size, EDAS devises a parallel setup scheme to speed up the data loading
time for a cold start function. It directly instructs the memory daemon to load data to the GPU
in parallel with GPU context creation. Upon accessing the preloaded data through the interfaces
inside the GPU function, the linkages between the loaded data and the function are captured to
ensure the correctness of function execution.

Second, with the attribute of read-write property, EDAS designs a multi-stage resource exit
scheme, reducing the data loading pressure and alleviating network and PCle contention. It releases
writable data, GPU context, and read-only data in sequence. In this way, EDAS’s function runtime
keeps the read-only data warm for a longer period, maximizing opportunities to share them across
multiple requests. Additionally, EDAS also temporarily caches read-only data in larger and more
cost-efficient CPU memory to minimize the overhead of fetching data from remote databases.

We have implemented and deployed EDAS on a cluster with A10 GPUs. A series of GPU functions
are integrated into EDAS, including 7 traditional DNN inferences [18, 26—28, 44, 46, 47, 56], 3
scientific computing tasks [45], and 2 large language models [31, 49]. These GPU functions using
DNN models are generated from our automatic conversion tool, the GPU functions using LLM are
ported from LLaMa.cpp [23] (details in subsection 5.4). The GPU functions for scientific computing
tasks are built from the scratch.

Our experimental results show that EDAS reduces the function duration by 16.2X and improves
system throughput by 1.91x compared with state-of-the-art serverless systems. The main contribu-
tions of this paper are as follows:

e Identifying the root causes of long data loading and low throughput in existing GPU
serverless systems. Based on the investigations, we propose EDAS with appropriate data
loading boost and fine-grained data-sharing methods to address the issues.

e Designing an elegant mechanism that efficiently parallelizes actual data loading and
context creation. EDAS utilizes it to accelerate the overall data loading time, when there are no
available resources for reuse.
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Table 1. The benchmarks used for investigation.

Task [ Task Type
vggll [44], inception3 (incep3) [47]
resnet50 (resnet) [27], nasnet [56]
deepspeech (speech) [26]
seq2seq (s2s) [46]

Computer Vision

Speech Recognition

bert [18], llama-7B-INT8[49] Natural Language
bloom-2.8B-FP16 [31] Processing
Ibm, mrif, tpacf [45] Scientific Computing

e Proposing approaches that reduce contention of the data-loading paths for improving
the function data loading and system throughput. EDAS achieves the goal through fine-
grained data sharing, especially the multi-stage resource exit scheme.

2 RELATED WORKS

There are a few prior works [3, 5, 19, 22, 25, 38] on integrating GPU in serverless computing,.
The usable GPU serverless platforms are available in Alibaba Cloud [3] and Microsoft Azure [5].
For tradeoffs between GPU accessibility and the portability of existing serverless platforms, they
schedule the GPU function at the granularity of size-fixed GPU instances (FixedGSL). ORSCA [38],
DGSF [22] provided GPU functions on CPU-only nodes with pre-created GPU context on remote
GPUs. It is achieved through API-remoting. The significant memory required for pre-warming
and communication overhead make these methods impractical for production use. We compare
EDAS with FixedGSL and DGSF in § 8. In FaST-GShare [25], it focuses on spatio-temporal GPU
sharing, whereas our work addresses a different challenge—efficient data loading. FaST-GShare is
orthogonal to EDAS’s goal, and they can be combined together for optimizations.

Some prior works support fine-grained memory and computation management through hijacking
driver-level API, such as Alibaba cGPU [11], Tencent qGPU [9], vCUDA [43], qCUDA [35] and
GPUshare [24]. These technologies provide isolated GPU memory and computing capacity. NVIDIA
also has its own GPU fine-grained resource-sharing solutions, such as MPS [8]. Some works have
proposed GPU-sharing solutions in fixed scenarios, such as deep learning applications [17, 54, 55].
These techniques are not aware of serverless’s characteristics and do not help accelerate the setup
for existing GPU serverless frameworks. However, they can be integrated into EDAS to provide the
mechanism of better memory and computation isolation.

There are also many prior works on optimizing the startup time in serverless computing [34,
37, 39, 50-52]. Replayable Execution [53], Firecracker [13], and Catalyzer [20] are snapshot and
fork-based optimizations. SAND [14] used a multi-level sandboxing mechanism to improve the
performance of the application. These works only accelerate the host-side operations, making GPU
functions still suffer from long setup and extra memory consumption.

3 BACKGROUND AND MOTIVATION

In this section, we begin by presenting state-of-the-art GPU serverless systems, along with the
benchmarks used. Next, we analyze the inefficiencies in existing serverless systems and identify
the opportunities.
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3.1 GPU Serverless and Benchmarks

Existing serverless systems, such as Alibaba Function Compute [3] and Azure Function [5], all adopt
instance-fixed GPU serverless computing mode (FixedGSL mode). Different serverless systems may
use different minimum GPU usage granularities. Alibaba Function Compute supports the usage of
1/24 A10 GPU or 1/12 T4 GPU (1 GB memory usage granularity and corresponding time slices) [3].
Azure Function only supports the usage of 1 A10 GPU or 1 T4 GPU.

When a GPU function is triggered by a user request, the system allocates a fixed size of GPU
resources to it. Upon obtaining resources, the serverless system delegates the processing of requests
entirely to GPU functions, covering data loading and computation. After completing the request,
the GPU function stays alive for a while, facilitating warm startup for subsequent requests. If no
requests arrive within a certain timeframe, such as 2 minutes [34], the system will release the
resources occupied by the function.

Since GPU serverless is suitable for a variety of fields, we choose multiple DNN inference
tasks, and scientific computing tasks as the benchmarks. As shown in Table 1, we use seven DNN
models [18, 26-28, 44, 46, 47, 49, 56], and three scientific tasks [45]. The DNN models span computer
vision, speech recognition, and natural language processing, while the scientific tasks include fluid
mechanics (Ibm), medical assistance (mrif), and astrophysics (tpacf). Meanwhile, Llama-7B-INT8
and Bloom-2.8B-FP16 are also included to represent the large language model (LLM). These functions
are implemented by Rammer [36], Parboil [45], and LLaMa.cpp [23]. We run the benchmarks on a
node with one Nvidia A10 GPU (24GB memory), which is one of the most commonly used inference-
oriented GPUs among cloud providers. The detailed hardware and software configurations are
described in Table 3 of § 8.1.

3.2 Inefficiencies of FixedGSL

To demonstrate the inefficiencies, we examine the performance of GPU functions both with and
without resource contention.

3.2.1 End-to-end Execution without Contention. In order to measure GPU function duration without
impact of network and PCle contention, we generate user requests in a closed-loop manner for
each GPU function running with FixedGSL. Figure 2 shows the duration breakdown of all functions.
The end-to-end duration for GPU functions could be segmented into seven stages: 1) container
creation; 2) CPU context creation (includes the network setup like grpc[10]); 3) data loading from
database to CPU memory; 4) GPU context creation (includes the library initialization like cuDNN);
5) data loading from CPU memory to GPU memory; 6) function computation; and 7) results return.

In the figure, the stages before computation account for 88.7% of the end-to-end duration on
average. Among these stages, container creation is the most time-consuming (49.7% of end-to-end
latency on average). Since there is no big difference in launching a GPU container and a CPU
container, GPU container creation time can be directly optimized using the pre-warm techniques
proposed for CPU containers [3, 34, 39].

Data loading dominates function duration. When the container creation time is eliminated,
we refer to the four stages from stage 2-5 as the overall data loading stages. The pure computation
time of benchmarked functions shows that, excluding LLM models, the average computation time
of these functions is 48.6 milliseconds. As for the LLM models, it ranges from hundreds to thousands
of milliseconds. Across all benchmarks, computation still only takes up 11.1% of the duration. On
the contrary, the overall data loading time takes up 49.7%. Given these observations, fast data
loading is crucial for function performance. Otherwise, the overall data loading may dominate the
end-to-end function duration.
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Fig. 3. The data loading time of all applications normalized to the solo-run case under FixedGSL.

Blocking Creation of GPU Context. Delving deeper into the time breakdown of the overall
data loading stages, we find that the actual data loading takes up 63.2%, and the GPU context
creation takes up 36.8%. For the non-LLM benchmarks, the actual data loading takes up 56.1%, and
the GPU context creation takes up 43.9%. Access to the GPU requires an established GPU context.
When the serverless system hands over all data loading stages to GPU functions, loading data to
GPU memory inside the GPU function is blocked by the GPU context creation, even if the data is
ready in CPU memory. Thus, GPU functions are suffering prolonged data loading time due to the
blocking nature of GPU context creation.

3.2.2 Data Loading Duration With Contention. We then measure the data loading time of GPU func-
tions under resource contention. In this scenario, requests are generated with a Poisson distribution
and scheduled in an open-loop manner. To better illustrate data loading under contention, we
benchmark one function at a time. Requests for the same functions contend for PCle and network
resources. Simultaneously, we gradually increase the load until FixedGSL fails to process received
requests due to GPU resource limits.

Poorer function performance under contention. Figure 3 shows the average data loading
duration of all functions with FixedGSL under the peak load. This time is normalized to the data
loading duration without contention. As shown, each function in FixedGSL suffers 6.1 data loading
time on average compared with no contention case. This demonstrates that multiple concurrent
GPU functions encounter serious network and PCle contention. While PCle have greater bandwidth
than network, we further conduct the experiments without network requirement. Experimental
results show that each function still suffers 4.8x data loading time on average.

3.3 Opportunities and Challenges

In a nutshell, while the serverless system hands over the data loading to the GPU functions, they
suffer from the long data loading stages and the severe resource contention in the datapaths. Faced
with the significant data loading issues, we observe some opportunities when delegating data
loading to the serverless system.
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Fig. 4. The overview of EDAS.

o The serverless system could perform actual data loading before the GPU context is created. The
parallelization of these two stages can speed up the overall data loading.

e Many functions have read-only data, like weights in DNN inference [18, 27]. The serverless
system could eliminate repetitive data loading across multiple requests of the same GPU function,
thereby alleviating resource contention.

However, existing serverless systems fail to capitalize on these opportunities due to the absence
of pertinent data information. The above opportunities all require the linkages between the data
and GPU functions, i.e., data positions of function inputs and their properties (sizes and read-
write requirements). Data preloading is not possible in existing serverless systems without such
information. Moreover, when multiple GPU functions share the same input data, such linkage
can help serverless systems to detect and exploit the sharing opportunities. Our design goal is to
improve the programming interface of GPU serverless systems to easily express the data linkage
and optimize the contention of GPU functions with the exposed knowledge.

4 DESIGN OVERVIEW

To capitalize on the opportunities outlined above, we propose EDAS, a GPU serverless system that
takes over the data loading from GPU functions. Figure 4 depicts the overview of EDAS. The left of
Figure 4 shows an example of EDAS’s enhanced user request. The right shows EDAS’s serverless
runtime, which proactively optimizes the data management for the hosted GPU functions.
Enhanced user request. As shown on the left of Figure 4, EDAS enhances the user request
by annotating the data attributes of function inputs, namely data size and read-write attributes.
These attributes are essential for proactive optimization of data management. While awareness of
these attributes allows for optimizations, EDAS still needs to ensure correct usage of managed data
by perceiving the data access within each GPU function. EDASLoadToGPU() and EDASDumpToDB()
are proposed for GPU functions to access the data managed by EDAS. EDAS establishes linkages
between the managed data and functions via analysis of the invocations of these interfaces (§5.3).
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Execution flow of EDAS’s serverless runtime. EDAS can now host GPU serverless functions
with proactive data management. EDAS’s runtime consists of three modules: the execution shim,
the unified memory daemon, and the kernel executor. When a request arrives at runtime, it extracts
the data attributes by parsing the enhanced request specification, which are then forwarded to the
memory daemon for data loading. Concurrently, the runtime initiates the function for creating
context. During the function’s execution, it uses the provided interfaces to access the data loaded by
the memory daemon. The execution shim intercepts all GPU calls and forwards them to the memory
daemon or the kernel executor, respectively. The executor communicates with the memory daemon
to ensure that related data loading is completed correctly. Meanwhile, the runtime employs a multi-
stage resource exit scheme to support better data sharing across requests for the same function. It
releases the function’s resources in the order of writable data, GPU context, and read-only data.

Automatic conversion tool. Imposing additional development burdens on programmers is
often unacceptable. Fortunately, many functions are developed using programming frameworks,
such as PyTorch [40] for DNN applications, TorchPhysics [48] for physics-based applications, and
PyHalide [41] for stencil applications. To address this, we provide an automatic conversion tool for
PyTorch-based DNN applications by extending the DNN compiler, Rammer [36]. This automated
tool also seamlessly supports physics applications developed with TorchPhysics. At the same time,
we can support the automated conversion of stencil applications using PyHalide in a similar way.

5 PARALLELIZED DATA LOADING

With the enhanced user request, we first present our method for optimizing the overall data loading
time when a GPU function is first triggered by a user request.

5.1 Rationale for Decoupling Data and Context

As mentioned in §3.2.1, a GPU function consists of seven stages. Figure 5 outlines the common
execution flow of these stages. Among these stages, stages 3 and 4 could be executed in any order
due to no dependency. Stages 5 and 6 could also occur in any order because the GPU memory
allocation and the GPU kernel launch could happen at any time. In the existing GPU serverless
systems, these stages are all handed over to the GPU functions. Due to the fact that the data loading
stages are blocked by the context creation stages, the overall data loading time is long for GPU
functions (§3.2.1).

To address this issue, EDAS tries to decouple data and context for stage parallelization. We
observe that GPU functions always load data from external sources. For instance, DNN inferences
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Fig. 6. Figure-(a) presents an example of adapting existing GPU application to a EDAS supported GPU
function; Figure-(b) illustrates the workflow of execution shim to build the linkages for correctness ensurance.
Note that, GPU contexts are typically created implicitly. In the original code, a context is instantiated
automatically when cudaMalloc() is invoked for the first time, as it is required before any memory allocation
can proceed. In our design, we also make this process explicit: the GPU context is created during the first call
to EdasLoadToGPU(), ensuring that subsequent memory allocations are supported within this context. The
loose “data ready” state refers to the condition where only memory allocation has been completed.

commonly read model inputs and weights from database, while scientific computing services
require input data or updated data to be sourced from database. The data to be loaded for invocating
the GPU function is already ready when the function is triggered. This means that the data loading
and context creation are not firmly intertwined and could be decoupled for parallelization.

The serverless system could perform data pre-loading with a pre-created context when the GPU
function is creating its own context. The data loaded by the serverless system will be shared with
the GPU function when it actually needs it. This is achievable through inter-process communication,
which is both supported on CPU and GPU [4].

5.2 Parallelizing Data and Context

Based on the above analysis, data loading is delegated to the serverless runtime in EDAS. EDAS
reconstructs the dependency graph for the GPU function workflow. In the left of Figure 5, EDAS
divides the overall data loading stages into two distinct parts: context creation and actual data
loading. The GPU function and the memory daemon are responsible for these two parts respectively.
The parallelization of these two parts could accelerate overall data loading.

Traditionally, the function loads the data to GPU memory, and gets the correct data address
immediately. However, the decoupling of data and context breaks the linkage between the correct
data address and GPU function, shown in the right of Figure 5. When a function needs to perform
computation, the unified memory daemon does not perceive the right data address that the function
computation needs. Even if we can intercept the memory-related interfaces, we still could not build
the linkage. This is because GPU functions may request the input data in user requests in any order.
Parallelization of data and context disrupts the original programming model.

To address this problem, EDAS proposes two interfaces: EdasLoadToGPU() and EdasDumpToDB()
for GPU functions to access the data managed by EDAS. Users could define a GPU function for EDAS
by using these two interfaces and the enhanced user request. Figure 6-(a) depicts an illustrative
example of adapting a traditional GPU function to an EDAS-supported GPU function.

Originally, LoadDataToCPU(req. input[@]) is used by the function handler to load data to CPU
memory, which then uses cudaMemcpy () to load data to GPU memory. It uses the input id to build
the linkage between data and function implicitly. In an EDAS-supported GPU function, the function
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handler resorts to EdasLoadToGPU() for data loading and EdasDumpToDB() for data writeback,
which are related to the database. Similarly, EdasLoadToGPU() requires the input id, which helps
build the linkage between GPU functions and the data pre-loaded by the memory daemon. Note
that CUDA native calls like cudaMalloc() could still be used.

Except for building the linkages, EDAS achieves two advantages through the two interfaces. First,
when the GPU function calls EdasLoadToGPU(), the memory daemon returns a correct data address
without waiting for the data loading to be completed. This is because the GPU function may need
an asynchronous data transfer. Second, when the GPU function calls EdasDumpToDB(), the memory
daemon directly dumps the data into the database, which also does not wait for completion.

5.3 Correctness Support with Execution Shim

Asynchronous data transfer brings another challenge. Traditionally, synchronization is performed
inside the GPU function to ensure that the data is truly ready. However, the serverless system
should not hack into the function. To this end, EDAS proposes an execution shim to intercept the
common GPU function calls, like cudaMalloc() and kernel launching. Memory-related calls are
forwarded to the memory daemon, and the kernel calls are forwarded to the executor. The memory
daemon and the kernel executor cooperate to ensure data correctness.

Figure 6-(b) demonstrates how the shim interacts with the memory daemon and kernel executor.
When the kernel executor receives the kernel call, it communicates with the memory daemon to
verify whether all the data required by the kernel has been prepared. If all data is ready, the kernel
executor can directly launch the kernel to the GPU. If the data is not ready, the kernel executor
waits for a while and retries. When the function exits, EDAS also checks if all intercepted calls
complete. Based on the above method, no matter the function requires synchronous data loading
or asynchronous data loading, EDAS supports them well.

5.4 Automatic Conversion for Mainstream Applications

New GPU functions developed from scratch can directly utilize the data interfaces mentioned, with
only minimal differences from traditional memory management functions. For GPU functions that
rely on specific frameworks—such as PyTorch-based DNN applications—we provide an automated
conversion tool to streamline the adaptation process.

In the case of DNN applications built with PyTorch [40], we provide an automatic conversion
tool based on the DNN compiler, Rammer [36]. This tool first converts the PyTorch DNN model
into an ONNX file and then directly generates deployable functions (written in CUDA) along with
an enhanced user request based on the ONNX file.

Specifically, we design a function template for the DNN models, and we just need to extract
the necessary information from the ONNX file to populate this template. As shown in Figure 7,
this template consists of two parts: the main function, which handles network setup and request
triggering, and the functionEntry(), which is triggered by the user request and executes the
computation. The functionEntry() can be easily wrapped to support binding to the Python side,
providing a callable interface. The process of generating code from this template can be divided
into five steps.

e Step 1: We identify the parameter tensors in the ONNX file and classify them as read-only data.
Meantime, we identify the input tensors classify them as writable data, while all other tensors
are also treated as writable.

e Step 2: Since only the input tensors and parameter tensors need to be fetched from external
databases, we use this information to generate the enhanced user request.
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void functionEntry(Request req) {
void *in_d, *weight_d, *out_d;
J] =mmmmmm e data loading section
EdasLoadToGPU(in_d, req.input[e@]);
EdasLoadToGPU(weight_d, req.input[1]);
cudaMalloc(out_d, req.output[@]);

J] ===ememememmmeeocoaol kernel execution section
kernelExecute();
7 result writeback section

EdasDumpToDB(out_d, req.output[0]);

void main() {
setupNetwork();
RequestTrigger(functionEntry);

Fig. 7. The GPU function template used by the automatic conversion tool.

e Step 3: We generate data loading code for the input tensors and parameter tensors. As shown in
the data loading section of Figure 7, we replace the original cudaMalloc() and cudaMemcpy ()
interfaces with EdasLoadToGPU(). For other tensors, we still rely on cudaMalloc().

e Step 4: We identify the output tensors in the ONNX file and use EdasDumpToDB() to write the
results back, as illustrated in the result-writeback section of Figure 7.

e Step 5: As shown in the kernel execution section of Figure 7, we generate the corresponding
kernel code and wrap it in a kernelExecute () function. The entire GPU function is then ready
for deployment.

Notably, large language models (LLMs) cannot be directly processed by current DNN compilers.
Fortunately, LLaMa.cpp is a widely used open-source framework. We make slight modifications to
LLaMa.cpp [23] to enable it to independently manage weights, the KV cache, and other intermediate
results. Specifically, each time an LLM request is triggered, LLaMa.cpp allocates the maximum
possible memory required for the KV cache and requests additional memory for other tensors
based on actual needs. Using this method, we also support the integration of large language models
within the EDAS system.

For other framework-based applications, such as the physics applications developed with
TorchPhysics [48], the core computations also depend on PyTorch. Therefore, the same automated
conversion workflow used for PyTorch-based DNNs can be applied to TorchPhysics-based applica-
tions with minimal modification. On the other hand, stencil applications that rely on PyHalide [41]
for CUDA code generation require adjustments to PyHalide’s code generation pipeline. By desig-
ining a new template and modifying the generation process, we can also enable the automatic
integration of data access interfaces. This functionality is part of our future work and will further
expand the scope of automated GPU function support.

6 SHARING-BASED MEMORY MANAGEMENT

In addition to optimizing the data loading of the first request, we focus on optimizing the data
loading of subsequent requests in this section. While existing serverless systems [1, 2] all adopt
container reuse to optimize function startup, they do not concern the datapath contention problem
of GPU functions. Therefore, we first analyze the data loading of mainstream GPU functions, and
then present our multi-stage resource exit scheme to alleviate the datapath contention.

6.1 Data Loading Analysis

Existing serverless systems [1, 2] all adopt container reuse to optimize function startup. Subsequent
requests can reuse the container of the previous request (including data and context), and this
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Table 2. The memory usage of GPU functions (MB).

benchmark || context | read-only | writable read-(‘)nly wrlta‘ble
loading loading
bert 254 1282.5 60.1 1282.5 0.1
speech 254 24.8 6.9 24.8 0.2
incep3 254 91.1 11.7 91.1 1.0
nasnet 254 20.3 11.8 20.3 0.6
resnet 254 97.7 11.9 97.7 0.6
s2s 254 6.1 0.1 6.1 0.1
vggll 254 506.8 38.0 506.8 0.6
Ibm 254 0 165 0 165
mrif 254 0 22 0 18
tpacf 254 0.1 28.3 0.1 28.1
bloom 254 5839 1028 5839 2
llama 254 6810 1028 6810 2

container will remain warm for a period of time. However, existing optimization methods cannot
solve the datapath contention problem of GPU functions.

To reduce resource contention in the data loading paths, we investigate the data loading require-
ments of mainstream GPU functions. We find that the memory of a GPU function can be divided
into three categories: GPU context, read-only data, and writable data. The memory for GPU context
used to store the runtime data, is implicitly allocated during the initial execution of the function.
Writable data denotes the memory usage for storing input, intermediate, and output results that
may change during the execution. Read-only data, on the other hand, represents the unchangeable
data. The memory usage of the three types of data are comparable.

Table 2 shows the GPU memory usage of all the benchmarks. As observed from the table, GPU
context occupies the most memory usage except for bert, vggll, and the two LLM models, which
is 80.2% of the memory usage on average. For bert, vgg11, and the two LLM models, GPU context
occupies 13.6% of the total memory usage on average. Although GPU context occupies a large
amount of memory, experimental results show that the context creation time does not change
when multiple functions create their contexts simultaneously. This implies that the GPU function’s
context creation does not interfere with each other.

In addition to GPU context, explicit memory accounts for 42.1% of the overall memory usage.
Inside the explicit memory usage, the data needs loading from external sources accounts for 83.9%.
Therefore, the GPU functions have large data loading requirements. As demonstrated in § 3.2.2,
GPU functions encounter severe resource contention during data loading. The benchmark functions
suffer 6.1x data loading time compared to the solo-run case.

However, existing GPUs only offer basic data transfer APIs through PCle, which could only
handle data transfer tasks sequentially. Meanwhile, the network bandwidth used by CPU loading is
also limited. There lack of sophisticated interfaces to manage the data loading of multiple functions
to improve efficiency. Faced with these limitations, we can only resort to other methods to optimize
data loading.

6.2 Multi-stage Resource Exit

Inspired by the sharing-based container reuse method, we optimize data sharing between user
requests to solve the data loading contention between functions. While read-only data remains
unmodified during function execution, sharing it between multiple user requests does not cause

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 1. Publication date: August 2025.



EDAS: Enabling Fast Data Loading for GPU Serverless Computing 1:13

‘ User request starting point
(Stage 4) (Stage 3) (Stage 2) (Stage 1)

CPU Context Read-only Data Read-only Data l Computation
Container (CPU Memory) (GPU Memory) P

7

shared warm resources

Fig. 8. The multi-stage resource exit mechanism. The shared resources are marked with different background
colors for different stages.

correctness issues or performance problems. It should be noted that multiple user requests are
serviced by the same function, which comes from the same service provider. There will also be no
malicious memory attack on the GPU.

In this case, sharing read-only data can effectively reduce data loading requirement, further
reducing resource contention in the data loading paths. Therefore, the GPU function’s data loading
time could be improved. It is worth noting that read-only data is not limited to the weight of ML
inference tasks. The tpacf benchmark in astrophysics also has read-only data. Any read-only data
in the GPU function could be shared by multiple user requests.

Since the enhanced user request contains the read-write attributes of function inputs, EDAS can
distinguish between read-only data and writable data. Based on this, EDAS proposes a multi-stage
resource exit scheme based on data sharing. First, EDAS only prepares a single copy of read-only
data for one GPU function, and multiple requests of the same function share the read-only data.
Second, EDAS releases writable data, GPU context, and read-only data in sequence according to
their different usage characteristics.

Specifically, we design the multi-stage resource exit scheme based on one key principle: max-
imizing sharing possibility to reduce the loading requirement. Based on this, EDAS’s resource
management has five stages as shown in Figure 8:

o Stage 1: When multiple requests of a function arrive simultaneously, the memory daemon returns
the same read-only data address and prepare the writable data for these requests respectively.
When the user requests complete the computation, they release the writable data immediately.

e Stage 2: When no user request arrives for a period of time, the GPU function releases the GPU
context. This is because the GPU context does not bring data loading contention, and the GPU
context creation time is stable.

e Stage 3: When no user requests come for another period of time, the GPU function then releases
the read-only data on GPU and caches it on the CPU side. This is because CPU memory is a
cheaper and larger storage medium, which is very suitable for caching the read-only data.

e Stage 4: If the GPU function keeps idle for a period of time, the GPU function then releases the
read-only data in CPU memory.

e Stage 5: EDAS releases the CPU context and the container. Any requests come later will set the
function to Stage 1.

Leveraging the above multi-stage exit scheme, we are able to attain a more flexible management
of the tradeoff between GPU resource cost and warm function runtime. Moreover, it is noteworthy
that the time interval of each stage is adjustable. For instance, configuring each stage’s interval to
the previous time interval would enable the GPU function to maintain a longer warm state at a
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lower cost. Alternatively, configuring the overall duration of the five stages to the previous time
interval would allow the serverless platform to support a similar warm effect at a lesser cost. In
this paper, EDAS configures each stage’s interval to the previous time interval, which is set as 30
seconds [33, 34].

7 IMPLEMENTATION AND SECURITY MODEL
7.1 Implementation

We implement a prototype of EDAS for components described in §4. Our current implementation
supports both GPU functions developed from scratch and domain-specific GPU functions that rely
on frameworks. We use Docker [12] and Nvidia Container Toolkit [7] for the application sandbox,
GRPC [10] for message passing. We also deploy MinlO [6] an S3-compatible object store for data
storing.

The Memory Daemon and Interfaces. The memory daemon runs directly on the host, outside
the GPU function containers. When the daemon manages all memory allocation and data transfers
for GPU functions, the GPU functions access their data addresses from the memory daemon via
data access interfaces. This process is facilitated by CUDA IPC [4], which supports communication
between the inside and outside of containers without requiring special handling.

7.2 Security Model

In EDAS, user-uploaded function handlers and data access are considered untrusted elements
within the guest environment. We analyze the security model of EDAS from two aspects. On the
one hand, we adopt the same security model as traditional CPU-side serverless used [14], using
sandboxes to isolate untrusted guest environments to prevent malicious users from threatening
hosts and other tenants.

On the other hand, tenants from different sandboxes access GPU memory via EDAS’s unified
memory daemon, which enforces security boundaries through GPU context isolation. Specifically,
the memory daemon maintains a dedicated GPU context for each tenant, while functions belonging
to the same tenant share the same context. Although the daemon may manage multiple contexts
simultaneously, we mitigate the associated memory overhead by tuning context parameters using
cuCtxSetLimit() (§8.10).

If a GPU function crashes, it does not impact the execution of other GPU functions. This isolation
is ensured by running each function in its own GPU context. We validate this behavior by inducing
GPU function crashes under various scenarios, such as forced termination and incorrect memory
deallocation. In all cases, the failure is confined to the crashing function, with no observable effect
on other concurrently executing GPU functions.

8 EVALUATION
8.1 Experimental Setup

Testbed. We mainly evaluate EDAS on a server equipped with an Nvidia A10 (24GB) GPU. We
also evaluate EDAS on a cluster of servers equipped with the Nvidia A10 (24GB) GPU in §3.7.
Meanwhile, we evaluate EDAS on a server equipped with an Nvidia A100 (40GB) GPU in §8.8. The
detailed hardware and software setup are shown in Table 3.

Benchmarks and workload. We use seven DNN applications, three scientific computing
applications, and two large language models for evaluation. These applications cover diverse
domains such as object recognition, speech generation, natural language processing, fluid mechanics,
and real-time medical imaging. Detailed information about the benchmarks can be found in Table 1
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Table 3. Hardware and software setups in the experiment.

Configuration
Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz,
Disk: SSD 100G, Cores: 16, DRAM: 60GB
Nvidia A10, 24GB HBM, PCle 4.0
Nvidia A100, 40GB HBM, PCle 4.0
Operating system: Ubuntu 20.04 with kernel 5.4.0
Docker version: 20.10.21, Nvidia driver: 470.161.03
Image: nvcr.io/nvidia/pytorch:22.09-py3
CUDA: 11.8, cuDNN: 8.6.0, cuBLAS: 11.11.3
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Fig. 10. The system throughput (RPS, requests per second) of FixedGSL, FixedGSL-F, DGSF, and EDAS.

of § 3. In all experiments, we randomly extract the function traces from Microsoft Azure Functions
(MAF) [42] and map our applications to them. We replay these traces for 2 hours.

Baselines. We use FixedGSL, FixedGSL-F, and DGSF as the baselines. FixedGSL is only capable of
allocating memory for functions at a granularity of 1 Gigabyte. We extend FixedGSL to FixedGSL-F,
which supports flexible memory allocation for functions. Additionally, we also choose DGSF [22]
as another baseline. DGSF pre-creates two GPU contexts for each function to eliminate GPU
context preparation time. When the pre-created GPU contexts are available, the user requests could
use them. When the contexts are occupied, the later user requests need to construct new GPU
contexts [22]. Note that, to better distinguish our effectiveness from previous works on the CPU
side [13, 14, 33], we enhance all the systems with the pre-warmed container. Specifically, the user
requests from the same function could share the container, which could optimize the container
creation time.
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Fig. 11. The throughput performance of of EDAS normalized to theoretical throughput and the reduced setup
time reduction of EDAS compared to solo-run case.

8.2 Overall Performance

In this subsection, we collect the average response latency of functions and system throughput for
FixedGSL, FixedGSL-F, DGSF, and EDAS. The load of user requests is 20-200 requests per minute,
which is randomly chosen from the MAF traces [42].

Figure 9 illustrates the average response latency of each benchmark with FixedGSL, FixedGSL-F,
DGSF, and EDAS. On average, EDAS outperforms FixedGSL, FixedGSL-F, and DGSF by 16.2X, 31.1X,
and 16.6X, respectively. EDAS outperforms FixedGSL, FixedGSL-F, and DGSF on the minimum by
2.16X%, 3.47X, and 1.11X, respectively. Besides, we also collect the 99%-ile latency of each benchmark,
which is not shown due to page limitation. For the 99%-ile latency of all functions, EDAS outperforms
FixedGSL, FixedGSL-F, and DGSF by 7.9%, 16.6X, and 9.3X, respectively.

FixedGSL and FixedGSL-F do not prioritize the latency performance of functions. They only
schedule the function invocations with the memory usage in a fixed granularity. In DGSF, although
GPU contexts are pre-created to reduce setup, the benefit can easily diminish. This is because DGSF
only pre-creates 2 contexts for the same function due to the high memory overhead. When the
function load bursts, only the first several invocations can enjoy the pre-created contexts. Moreover,
it ignores the resource contention of the data-loading path, still suffering long data preparation.
EDAS takes both of these factors into account and is highly effective in reducing latency in all
circumstances.

Figure 10 illustrates the system throughput of FixedGSL, FixedGSL-F, DGSF, and EDAS. EDAS’s
system throughput outperforms FixedGSL, FixedGSL-F, and DGSF by 1.91X, 1.55X, and 1.29X,
respectively. The throughput improvement comes from the fast data loading of EDAS. While GPU
functions do not need to wait for data for a long time, they could complete the compution and
release the GPU resources in a short time. Therefore, EDAS achieves a higher system throughput.

We can also observe that FixedGSL-F performs worse than FixedGSL in both latency and through-
put. This is because FixedGSL-F has larger function concurrency due to the flexible memory usage.
While FixedGSL and FixedGSL-F do not concern the data loading management, more function
concurrency means more serious and unrestrained contention of the data-loading paths. Therefore,
FixedGSL-F performs worse than FixedGSL in both latency and throughput.

8.3 Supported Peak Throughput

In this subsection, we use the same experimental setup as § 3 to evaluate the function’s data loading
time and the system throughput for EDAS. The left part in Figure 11 shows the normalized reduced
response latency of each function using EDAS compared to the solo-run case. The right part in
Figure 11 shows the throughput of each function using EDAS normalized to the theoretical one. The
theoretical throughput is computed based on the function’s pure computation time. For example,
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Table 4. Latency breakdown of resnet50 running with multi-stage resource exit scheme.

Time (ms) || SOTA | stage 1 | stage 2 | stage 3 | stage 4
end-to-end 438.2 8.9 95.6 155.8 438.2
return data 0.1 0.1 0.1 0.1 0.1
compute 7.1 7.1 7.1 7.1 7.1
GPU data 10.5 0.2 10.5 10.5 10.5
GPU context 88.4 0 88.4 88.4 88.4
CPU data 138.1 1.5 1.5 138.1 138.1
CPU context 1 0 0 0 1
Container 193 0 0 0 193

bert needs 42 milliseconds to complete the function computation, its theoretical throughput is
1000/42 = 23.8 requests per second.

Experimental results show that EDAS reduces the data loading time of function invocations
by 60.3% on average. As shown from the figure, the DNN workloads have a greater effect than
the scientific services. This is because DNN workloads have more read-only data, which could
benefit more from the multi-stage resource exit scheme. Scientific services could only benefit from
parallelized data loading and the last stages of the multi-stage resource exit scheme. Meanwhile,
the system throughput of functions is 64.2% of its theoretical value on average. This comes from
the reduced data loading time and shorter GPU resource occupation.

Note that, there is also a significant gap between EDAS and the theoretical value because of
the resource contention. Although EDAS could optimize the data loading by deduplicating the
repetitive ones, some data loading could not be avoided. These data loading still could encounter
the datapaths contention.

8.4 Ablation of Optimization Mechanisms

Effectiveness of parallelized data loading. To evaluate the effectiveness of the parallelized data
loading scheme, we measure the end-to-end duration of the GPU functions like the experiment in
§3.2.1. The function invocations are generated in a close-loop manner. Figure 12 shows the duration
breakdown of all the benchmark functions with EDAS. Excluding two LLM models, EDAS reduces
the data loading time of all the functions by 29.1% on average compared with the results in Figure 2.
The benchmark functions either have the GPU context preparation time or the actual data loading
time. The parallelized function data loading scheme hides one part, thus improving the data loading
performance.

Effectiveness of multi-stage exit. We use Resnet50 as the representative benchmark to show
the breakdown in EDAS’s multi-stage exit mechanism. As shown in Table 4, compared with the
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Fig. 13. The average function response latencies of FixedGSL, DGSF and EDAS with 24 functions. Results are
normalized to FixedGSL. The x-axis shows the 24 GPU functions. For instance, b1 and b2 represent the two
bert functions.

traditional method which only includes warm container state, EDAS contains four stages for fine-
grained management. In the table, the bold values and the zero values are hidden by the italic value
in EDAS. For example, the GPU data loading time (10.5) and the CPU data loading time (1.5) are
hidden by the GPU context creation time (88.4) in stage 2. In stage 4, EDAS is also able to hide
data loading latency along with GPU context creation. The only difference between stage 3 and
stage 4 lies in the container creation step. EDAS improves the function’s latency by an average of
10.6X in the other three states compared to the cold state (baseline), with a minimum of 1.6x. All
other benchmarks show similar results. Experimental results show that EDAS reduces 91.7% of the
queries in the cold state.

Note that, LLaMA and BLOOM benefit more from the multi-stage resource exit scheme due
to their larger data footprints and longer data loading times. Once these models enter stage 3, a
substantial amount of time is spent loading their parameters into CPU memory and GPU memory.
As a result, the ability to defer memory release becomes especially valuable. Moreover, LLaMA
and BLOOM impose greater memory pressure on the GPU, which in turn increases the need for
multi-stage exit among other co-located functions sharing the same resources.

8.5 Efficiency with More Functions

In this subsection, we use more functions to further demonstrate the effectiveness of EDAS. While
the 12 functions in §8.2 have a load of 80-200 requests per minute, we add 12 functions with a lower
load in this section. Specifically, we use b1, b2 to represent two different bert benchmarks. These
12 functions have a load of 10-20 requests per minute, and the traces are also randomly mapped
from the MAF trace.

Figure 13 shows the average response latency of 24 functions under FixedGSL, DGSF, and EDAS.
EDAS outperforms FixedGSL and DGSF by 7.4Xx and 5.3X. EDAS outperforms FixedGSL and DGSF
in terms of system throughput by 1.85x and 1.23X, respectively. EDAS still achieves considerable
improvements compared to FixedGSL and DGSF. This demonstrates EDAS’s effectiveness in dealing
with more GPU functions. However, EDAS have less improvement compared to results in §8.2. This
is because the added functions bring more data loading, which brings more resource contention.
Meanwhile, the GPU functions encounter more function cold startup due to limited GPU memory,
which benefits little from the multi-stage resource exit scheme.

8.6 Scaling EDAS Out

To assess EDAS’s scalability, we conduct the performance tests on a cluster with 4 A10 devices on
4 nodes. Figure 14 illustrates the average latency of the ten applications using FixedGSL, DGSF,
and EDAS on the cluster. On average, EDAS surpasses FixedGSL and DGSF by 10.5% and 9.5X,
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Fig. 14. The average function response latencies of FixedGSL, DGSF and EDAS on a cluster with 4 A10 GPUs,
normalized to FixedGSL.
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Fig. 15. The average function response latencies of FixedGSL, DGSF and EDAS with local database.

respectively. Experimental results also show that EDAS delivers a 1.79X and 1.24X increase in
system throughput compared to FixedGSL and DGSF, respectively.

Based on the aforementioned data, it can be deduced that EDAS has excellent scalability. Although
we randomly dispatch the function invocations to GPU, EDAS could still improve the overall
system’s average latency and system throughput. This is because the proposed optimization
methods of EDAS are orthogonal to the task distribution strategy at the cluster level. EDAS can
integrate any cluster-level scheduling strategies proposed for specific scenarios to further achieve
performance improvements.

Note that, EDAS maintains its performance advantage even in larger-scale environments. This
is because the system continues to employ the same load-balanced request distribution strategy
regardless of scale. As a result, the workload pattern observed by each GPU remains consistent,
ensuring that performance does not degrade as the system scales.

8.7 PCle Contention Only

The database could be hosted on the local disk (SSD) or accessed through the remote network. The
main experiments are all conducted on the network with 20Gbit/s (2.5 GB/s) bandwidth. Meanwhile,
the PCle 4.0 has a bandwidth of 32 GB/s. The GPU functions first encounter the network bandwidth
contention. In this subsection, we set the database in the same node, proving the effect of PCle
contention.

Figure 15 presents the function response latency of FixedGSL, DGSF, and EDAS, which are
all normalized to FixedGSL. On average, EDAS surpasses FixedGSL and DGSF by 8.3 and 6.1X,
respectively. Meanwhile, EDAS outperforms FixedGSL and DGSF regarding system throughput by
1.55X and 1.14X, respectively. This is because the baselines still suffer from severe PCle contention
except from the data loading contention on the host. This implies the data loading management
schemes in EDAS also mitigate the data loading contention in PCle.
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normalized to FixedGSL.

8.8 Evaluation on Different GPUs

In this subsection, we conduct the experiments on the node equipped with an Nvidia A100 GPU.
Nvidia A100 GPU has greater computing power and large memory space than Nvidia A10 GPU.

Figure 16 presents the function response latency of FixedGSL, DGSF, and EDAS, which are all
normalized to FixedGSL. On average, EDAS surpasses FixedGSL and DGSF by 10.3x and 9.8X,
respectively. Meanwhile, EDAS outperforms FixedGSL and DGSF regarding system throughput
by 1.73x and 1.22, respectively. Although Nvidia A100 brings more function concurrency, it still
faces the same datapath bandwidth. Therefore, EDAS still benefits from the innovative data loading
management schemes. This further leads to better response latency of functions and higher system
throughput.

8.9 Overhead of EDAS

The overhead of EDAS arises from the runtime interception of functions and the communication
between the kernel executor and memory daemon. We test the runtime interception of functions
for a million times, compute the average overhead, which is about 5 microseconds. Meantime, we
use the shared memory to support the communication between the executor and daemon. We also
test the communication overhead, which is less than 10 microseconds. Therefore, the overhead of
EDAS is negligible.

8.10 Cost-benefit Analysis

To support parallel function setup and multi-stage resource teardown, EDAS introduces a memory
daemon responsible for data loading and GPU memory management. However, the memory daemon
requires GPU contexts to manage actual GPU allocations, which introduces memory overhead. On
an A10 GPU, the default memory size is 254 MB per context. To mitigate this overhead, we optimize
the context configuration parameters using cuCtxSetLimit(), reducing the per-context memory
to approximately 120 MB. Assuming ten users concurrently deploying functions on a single GPU,
a separate GPU context is instantiated for each user, resulting in a total memory overhead of
1.2GB. Despite this modest overhead, EDAS reduces function latency by 16.2X and improves system
throughput by 1.91x compared to the state-of-the-art serverless platform.

9 CONCLUSION

In this paper, we identify that the data loading delegated to GPU functions is a critical bottleneck
in the existing GPU serverless systems. The lack of data attributes is preventing the system from
optimizing the data loading, leading to high function latency and low throughput. To address this
issue, we propose EDAS, a serverless system with proactive data management for GPU functions.
EDAS enhances the request specification by allowing users to specify the data attributes including
the data size, data read-write property. Leveraging the data attributes, EDAS optimizes the GPU
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functions with two proactive data management mechanisms. With the data size attribute, EDAS
accelerates the loading process of a cold GPU function by parallelizeing the data loading and
function setup. With the data read-write property, EDAS maximize the data reuse among multiple
requests for the same function through a multi-stage resource exit scheme. Our experimental results
show that EDAS reduces function duration by 16.2x and improves function throughput by 1.91x,
compared with state-of-the-art solutions.
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