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In high-performance computing (HPC), parallelization is essential for improving computational eiciency as data and

computation scales exceed single-node capacity. Existing methods, such as the polyhedral model used in Pluto-Distmem,

focus on loop and array optimizations within shared memory but struggle with high communication overheads and inlexibility

in distributed environments. These methods often fail to efectively partition computation and manage data across nodes,

leading to suboptimal performance.

This paper presents Arachne, an innovative system designed to address these shortcomings by generating distributed

parallel code with minimized communication overhead. The system introduces a dynamic programming algorithm to optimally

distribute computational tasks across multiple processes, ensuring minimal communication costs. It also incorporates user-

friendly compiler directives, allowing programmers to inluence code generation easily and accommodate a broader range

of parallelization scenarios without needing in-depth knowledge of parallel architectures. Arachne signiicantly reduces

the learning curve and need for extensive code modiications, making parallel programming more accessible and eicient.

Evaluation of various HPC benchmarks demonstrates thatArachne outperforms existingmethods by reducing communication

overhead, lowering memory requirements, and supporting more complex parallel logic, thus enhancing the overall scalability

and eiciency of HPC applications.

CCS Concepts: · Computing methodologies→ Distributed computing methodologies.

Additional Key Words and Phrases: High-performance computing, Parallel code generation, Compiler directives, Code

optimization

1 Introduction

High-Performance Computing (HPC) increasingly relies on distributed parallelism to handle the growing scale of
computation and data[23]. While shared memory models leverage single-node parallelism, large-scale applications
must utilize distributed memory systems, where explicit data exchange between processes is required[34]. This
shifts the burden of coordination and communication management to the programmer.
Transforming serial code into distributed parallel code involves addressing three main challenges: (1)parti-

tioning computations for data parallelism, (2)distributing data among processes, and (3)managing parallel
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logic and communication. This process poses signiicant coding and debugging diiculties, especially for users
who need to extensively understand and rewrite unfamiliar code.
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Fig. 1. The process of PLUTO-Distmem.

The state-of-the-art approach for parallelizing serial code in distributed environments uses the polyhedral
model to identify sets of loop iterations that can be parallelized, called tiles[15]. These tiles are then mapped onto
processes in a distributed environment, managing inter-tile communication to generate distributed code. The
latest implementation of this approach is represented by Pluto-Distmem[14], the process of which shown in
Figure 1.
However, Pluto-Distmem fails to adequately address the aforementioned challenges. This is not an isolated

case. In the ADI Benchmark, while Pluto-Distmem can identify a data-parallel scheme, the tiles it generates
lead to excessively high communication overhead. In a 32-process coniguration, it generates 7742.25 GB of
inter-process communication, whereas the optimal distributed implementation requires only 0.25 GB.
The root cause lies in the polyhedral model, which is designed for shared-memory environments[14], and

when applied to distributed environments, it exhibits two fundamental laws.
a.The model derives an aine transformation for loop dependencies, determined through an implicit loop tiling

process within an integer linear programming solution. It imposes a stringent constraint: tiles must function as
atomic computations, meaning all loop iteration instances within a tile must be computed before moving to the
next one.
b.When multiple loops are combined into an overall linear programming problem that lacks a solution, the

polyhedral model independently solves linear programming for each loop. Consequently, it fails to jointly analyze
communication costs between these loops[7], resulting in signiicant communication overhead when switching
partitioning patterns among them. While this ensures optimality for individual loops, the polyhedral model
cannot ind a uniied solution for all loops combined.
Additionally, Pluto-Distmem struggles with memory constraints and adding parallel logic. For ADI, the

original serial version requires 392MB of memory per process, while the Pluto-generated version needs 662MB.
When distributing data due to limited memory on a single node, Pluto-Distmem is inefective. It also cannot
generate distributed reduction code for ADI, instead transferring data from all processes to a single node for
serial reduction.

The limitations of Pluto-Distmem stem from the polyhedral model’s exclusive focus on aine array accesses
within nested loops. During inter-tile communication and write-back, Pluto-Distmem requires each process to
write updates from other processes to the same array location, forcing every process to retain the entire array
structure. Additionally, the model treats other parallelizable logic, such as reduction, as serial due to dependencies
between instances.
We can ind optimization opportunities for polyhedral’s laws and limitations, corresponding to the three

challenges.
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(1)For computational partitioning, a.we treat each loop iteration instance as the atomic parallel granularity,
avoiding the enforced constraints of the polyhedral model and enabling iner-grained parallelism. As long as
instances from the same iteration range across diferent loops are placed within the same partition, the communi-
cation volume between diferent partitions is necessary and minimal. b.We propose a dynamic programming[17]
algorithm to minimize global communication costs across multiple loops, switching partitioning patterns only
when necessary.

(2)For data distribution, after mapping computational partitions to diferent processes, each process accesses
only the relevant portions of the arrays. We allocate new array spaces based on the partitions and use additional
dimensions to record the indices of the array blocks handled by each process. By mapping the memory access
operations on the complete arrays in the original code to the newly partitioned arrays, we achieve data distribution
and reduce the memory footprint per process.

(3)For parallel logic, such as reduction operations, static analysis alone is insuicient without user involvement.
To minimize user intervention, we devised a set of compiler directives that enable users to insert directives into
the original serial code, facilitating the generation of distributed parallel code.
In this paper, we propose Arachne, a system aimed at generating distributed parallel code with minimal

communication overhead. It comprises a set of user-facing compiler directives and backend components including
a static dependency analyzer, computational partitioning searcher, and code generator. It enables users to generate
distributed parallel code with minimal learning cost and avoid invasive modiications to the code. Users insert
compiler directives at appropriate locations in the original serial code. Arachne performs comprehensive static
dependency analysis on the code, extracting all loop structures and read-write information within parallel regions.
The computational partitioning searcher utilizes a dynamic programming algorithm to search for parallel schemes
with globally minimal communication overhead. After a series of optimizations, the code generator applies the
searched computational partitioning and data distribution to the original code and adds corresponding parallel
logic based on user-provided directives. Finally, it generates distributed parallel code.
Arachne efectively handles array accesses using loop indices, but its limitations arise when dealing with

irregular array accesses and complex aine patterns. Static dependency analysis cannot handle runtime-dependent
access patterns such as variables, pointers, or array elements as indices. Moreover, when complex aine patterns
create dependencies across multiple dimensions, the searcher may fail to ind a partition scheme suiting multiple
loops, leading to communication costs equivalent to the all-to-all communication seen in Pluto-Distmem’s
outcome.

To evaluate our approach, we implemented Arachne using LLVM pass and Clang tool and used the MPI library
as the communication backend. We evaluated Arachne on multiple common HPC benchmarks. Experimental
results demonstrate that compared to Pluto-Distmem, Arachne achieves lower communication overhead,
reduces the memory required by processes, and supports more parallel logic.

Our contributions mainly include the following:

• We identify existing issues in current distributed parallelization methods, rooted in coarse-grained parallelism
and unawareness of dependencies among multiple independent loops.

• We propose a dynamic programming search algorithm across multiple loops, leading to a parallel scheme with
the minimum communication overhead for the entire program.

• We design a set of compiler directives to assist users in controlling the generation of distributed parallel code
more precisely.

2 Background and Motivation

Distributed memory models introduce additional complexity to user programming, necessitating explicit ar-
rangement by the user. Transforming serial code into distributed parallel code entails addressing three crucial

ACM Trans. Arch. Code Optim.
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challenges: (1)computational partitioning for data parallelism, (2)data distribution among processes, and (3)the
communication and additional parallel logic necessitated by the above two.

2.1 Background

Current state-of-the-art research in automatic parallelization, targeting nested loops and array accesses, resides
within the polyhedral model. However, the parallel objectives of the polyhedral model are primarily tailored
for shared memory environments with multi-core architectures[14]. The latest advancement, Pluto-Distmem,
extends the applicability of the polyhedral model to distributed memory environments. By employing the
polyhedral model, Pluto-Distmem derives parallelization solutions, maps them to distributed environments,
computes the data sets requiring inter-process communication, and ultimately generates end-to-end distributed
code.

2.1.1 Polyhedral Represent and Dependence. In the polyhedral model, a �-layered nested loop forms a �-
dimensional iteration space through its outer-to-inner loop indices. Each loop statement generates an instance
during each loop iteration. The � loop indices of each instance form a vector, and the set of these vectors forms
the iteration domain of the statement, appearing as a polyhedron.

Polyhedral models also represent all dependencies between instances through dependence polyhedron. If two
instances have data dependencies (RAW, WAR, WAW), an arrow points from the irst to the second. Polyhedral
models further abstract these dependencies into directed graphs called Program Dependence Graphs (PDGs). If
an �2 instance depends on an �1 instance, there exists an edge from �1 to �2 in the PDG[22].

for (j = 1; j < N; j++)

for (i = 1; i < N; i++)

A[i][j] = f(A[i][j], A[i-1][j])

1 2 3 4
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instance

dependence

Fig. 2. Code with sync-free parallelism and its dependence.

2.1.2 Method of Polyhedral Model. The polyhedral model inds sync-free parallelism and pipeline parallelism
in loops by solving integer linear programming (ILP)[30]. Pipeline parallelism is the core means used by the
polyhedral model to achieve parallelization.
For nested loops where there is no dependence in one dimension, the polyhedral model can solve an ILP to

obtain an aine transformation that maps the iteration domain to the processor domain, generating a new outer
loop indexed by processors, which can run in parallel without any synchronization overhead[18]. For the code in
Figure 2(a), the dependence graph in Figure 2(b) reveals that all computations have no data dependence along the
� direction, while each instance depends on the previous instance along the � direction. The polyhedral model
maps the �-dimensional computations to the processors.

Most programs lack sync-free parallelism and require synchronization to expose parallelism. The polyhedral
model can achieve parallelism through pipelining for certain loops: loops with dependencies in each dimension,
whose iterations can execute with a ixed delay relative to the iterations they depend on[15]. This is visualized by
inding a hyperplane where all dependence directions in the iteration space have positive components relative to
the hyperplane’s normal vector. This implies a pipeline direction, enabling concurrent execution of instances on
the same hyperplane.
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for (j = 1; j < N; j++)

for (i = 1; i < N; i++)
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for (i = 1; i < N; i++)

for (j = 1; j < N; j++)

A[i][j] = g(A[i][j], A[i][j-1])  S2
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Fig. 3. Code with pipeline parallelism and tile selection.

In these cases, the polyhedral model solves an ILP to obtain another aine transformation. The solution
suggests a loop tiling scheme, determining the tile’s shape, and the aine transformation maps the tile edges
perpendicular to the axes. The polyhedral model then determines the parallel computation order based on data
dependencies between tiles. In linear programming representing pipelined parallelism, there is an additional
constraint: each tile is atomic, meaning all instances in a tile are computed before moving to the next tile. If tiles
cannot be executed as atoms, a mutual dependency arises, violating pipelined parallelism[30]. Figure 3(a) shows
the shapes of a legal tile and an illegal tile in such dependencies.
For example, in Figure 3, (d) demonstrates two tiling methods for the code in (b), corresponding to two ILP

solutions. Tile 1’s edges are perpendicular to the axes, and the dependence graph after the aine transformation is
shown in (f), while the tiling method of Tile 2 corresponds to the aine transformation shown in (e). All instances
within a tile can execute without additional dependencies. (f) shows the computation order corresponding to Tile
1’s tiling method, where the diagonal represents the pipeline direction, and all tiles on the same plane execute
concurrently in each time step.

If loops have more complex dependencies, making it impossible to solve an ILP that satisies these parallelism
constraints for the entire program, the polyhedral model attempts to ission the loops and continues to seek
parallelism opportunities in each part. In the PDG, a unidirectional arrow between nodes indicates that all
instances of one statement can execute entirely before those of another, allowing such loops to be split into two
independent sub-loops. The polyhedral model inds each strongly connected component in the PDG and seeks the
two aforementioned parallelism opportunities in each independent component. Strongly connected components
have only unidirectional arrows between them, requiring synchronization to ensure correct parallel execution.
The PDG of the code shown in Figure 3(b) corresponds to the dependence graph in (c). �1 and �2 instances

depend on their previous instances along � and � directions, respectively, resulting in loops pointing to themselves.
Furthermore, each �2 instance depends on an �1 instance, creating a unidirectional arrow from �1 to �2. Thus,
parallelism can be sought independently for �1 and �2, with synchronization added between them to ensure
correctness.
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Fig. 4. Inter-process communication in Pluto-Distmem.

2.1.3 Polyhedral for Distributed Memory. Pluto-Distmem explores the application of the polyhedral model to
distributed memory systems, achieving an automated end-to-end system capable of transforming serial code into
distributed parallel MPI code. Building on the ILP within the polyhedral model, Pluto-Distmem simultaneously
determines tiling dimensions, computation order, loop structure, and hierarchy.
Within the parallel dimensions derived from the polyhedral model, Pluto-Distmem assigns tiles to diferent

processes and computes the elements required for communication between each tile. As in Figure 4, it employs
Flow-out Sets to represent data needed by other processes after being written, and Write-out Sets to signify data
aggregation to a single node upon completing the parallel computation region. After executing a tile’s instances,
Pluto-Distmem packages the necessary data sets into bufer and sends them via MPI to the respective processes.
Upon reception, each process unpacks the data and writes it back to the original data location[16, 37].

2.2 Problems

However, Pluto-Distmem fails to efectively address the three challenges, due to its deiciencies in distributed
environments and its limited scope of application.

2.2.1 Deficiencies in Distributed Environments. The polyhedral model’s parallelization objectives are designed
for shared-memory systems, and applying it to distributed environments reveals two fundamental laws: (1)the
constraint for atomic tiles and (2)the inability to jointly analyze multiple independently processed loops.

Pipeline parallelism is the most prevalent application scenario for the polyhedral model. As discussed in Section
2.1.2, when seeking such parallelism, there exists a constraint that tiles must be atomic. When considering multiple
loops with complex dependencies, the constraint of atomic tiles restricts the polyhedral model to achieving
only coarse-grained parallelism at the tile level, resulting in a limited solution space. Since it is unable to ind a
uniied tile partition for multiple loops, the polyhedral model performs loop ission and independently solves the
ILP for each loop. This approach prevents the polyhedral model from jointly analyzing the dependencies and
communication between these independent loops.
In shared-memory environments, these two laws typically do not afect parallelization, as there is no data

inconsistency among threads. However, in distributed environments, maintaining data consistency requires
inter-process communication between loops, resulting in substantial communication overhead in the parallel
schemes derived by the polyhedral model.
Taking the ADI code in Figure 5(a) as an example, this represents a common computational pattern in HPC

applications. Due to reverse dependencies, the dependency chains between iterations form a circular pattern (as
bold arrows in Figure 5(b)) in the iteration space. A dependency chain implies that all instances must be executed
in the order deined by the original code, and the circular pattern indicates that tiling along this dimension is
illegal for the polyhedral model.
The polyhedral model fails to identify a pipeline direction for all loops in Figure 5(a), and instead resorts to

loop ission to explore independent parallelization. �1 and �2 exhibit sync-free parallelism along the � dimension,

ACM Trans. Arch. Code Optim.
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while �3 and �4 do so along the � dimension, leading the polyhedral model to add a synchronization point between
them for independent parallel execution, as in Figure 5(c). In shared memory, synchronization requires a barrier
for all threads, while in distributed memory, it involves all-to-all communication between processes, causing
signiicantly higher overhead than on-demand communication.

for (j = 1; j < N; j++)

for (i = 1; i < N; i++)

A[i][j] = f(A[i][j], A[i-1][j]) S1

for (i = N-1; i > 0; i--)

A[i][j] = f’(A[i][j], A[i+1][j]) S2

for (i = 1; i < N; i++)

for (j = 1; j < N; j++)

A[i][j] = g(A[i][j], A[i][j-1])   S3

for (j = N-1; j > 0; j--)

A[i][j] = g’(A[i][j], A[i][j+1])  S4
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Fig. 5. Polyhedral model’s handling of codes with complex dependencies.

2.2.2 Limitations of Use Cases. The polyhedral model’s limitations in managing data distribution and process
execution make it unsuitable for large-scale distributed computations requiring complex parallel patterns[7].

The polyhedral model focuses on aine accesses to arrays within nested loops, optimizing loop parallelism and
data locality. It requires each process to hold a complete deinition of all array structures to write data updates
from other processes at the corresponding positions, even if each process only accesses speciic portions of
the array. This becomes impractical for large-scale data partitioning across multiple processes to accommodate
memory limitations.

Furthermore, the polyhedral model is limited in supporting other parallel patterns in distributed environments,
such as array reductions. It always synchronizes by collecting data from all processes to a single node, where the
reduction is performed serially. Additionally, the polyhedral model lacks efective strategies for handling local
arrays deined within loops in distributed scenarios, such as promoting dimensions to facilitate inter-process
communication.

2.3 Opportunities

In response to the issues found within the polyhedral model, we can identify opportunities for resolution.

2.3.1 Fine-Grained Parallelism with Overall Communication. The two core laws of the polyhedral model can be
addressed by adopting iner-grained partitioning and optimizing communication strategies.
Observing the tile partition graph within the polyhedral model, we note that on determined dimensions,

any tile partition containing the same number of instances generates equivalent communication requirements
between tiles. As long as multiple loop instances with the same iteration range can be in the same calculation
partition, the communication volume between this calculation partition and other partitions is necessary and
minimal. In Figure 6, the partitions of each stage only require communication to satisfy dependency arrows with
adjacent partitions.

By considering each instance as the atomic parallel granularity instead of tiles, we avoid the enforced constraints
of the polyhedral model and jointly analyze communication costs across multiple loops. As depicted by the
dependency arrows that span diferent statements in Figure 6, the partitioning corresponding to the four statements
belongs to the same process, inter-process communication via all-to-all is not required. This approach addresses
the second law of the polyhedral model.
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Fig. 6. Partition with instance granularity in multiple loops.

2.3.2 User-Assisted Code Generation. The limitations of Pluto-Distmem in fully automating distributed parallel
code generation, particularly for data distribution and complex parallel patterns, necessitate user intervention to
achieve optimal results.
Data partitioning can be automatically handled through static analysis while considering ine-grained paral-

lelism. For local arrays, dimension promotion can eliminate dependencies between instances, achieving parallelism
and meeting inter-process communication requirements. Moreover, by introducing additional dimensions to
record partition indices, memory accesses to the complete array in the original code can be mapped to diferent
blocks of the partitioned array, facilitating data distribution and reducing the memory footprint of each process.
We aim to facilitate the generation of parallel logic with few user interventions. To minimize user learning

costs and mitigate invasive code modiications, we propose a set of compiler directives designed for insertion at
appropriate locations within the original serial code to assist code generation.

3 Overview

To address the aforementioned challenges, we propose Arachne, which combines user-facing compiler directives
with backend components. By adding a small number of auxiliary directives to serial code, Arachne enables
the end-to-end generation of distributed parallel MPI code, simplifying the programming process. The backend
consists of a static dependency analyzer, a computational partitioning searcher, and a code generator.

Serial Code

with Directive

Distributed 

Parallel Code

Static Dependence 

Analyzer

#pragma

Computational Partition 

Searcher
Code Generator

#pragma depend(A:…)

R:A[i][j-1]  W:A[i][j]

Analyzed Result

User-provided Runtime Deps

Preprocessing

Searching

Mapping

Optimization

i j

k

Searched

Parallel Scheme

Apply Scheme

Handle distribution

Add logic

#pragma distribute(A)

#pragma reduce(A)

data flow control flow

Fig. 7. Overview of Arachne.

As shown in Figure 7, the static dependency analyzer examines the original serial code, extracting loop
structures and array read/write access information, and provides this data, along with user-speciied runtime
dependencies, to the searcher. The computational partitioning searcher, the core of Arachne, operates in four
steps: preprocessing, searching, mapping, and optimization. It preprocesses the code using static analysis results
to extract parallelizable regions, promote local arrays, and ission loops for iner-grained parallelism. Next, it
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searches for a parallel scheme that minimizes communication overhead, potentially selecting from multiple
partitioning patterns. The mapping step assigns each computational partition to diferent processes. Finally, the
optimization step employs loop expansion to minimize communication where possible. The code generator
applies the parallel scheme to the code, manages data distribution and index remapping for user-speciied arrays,
and integrates parallel logic based on user directives. The inal output is distributed parallel MPI code.

4 Distributed Memory Code Generation

This section describes the backend design and worklow of Arachne, considering instance granularity and
overall communication cost.

4.1 Dependence and Parallelization

We use a portion of ADI code augmented with initialization logic as an example to illustrate the diferent
parallelization opportunities arising from two types of data dependencies. Unlike Pluto-Distmem’s coarse-
grained analysis, which targets tiles, our analysis is performed at a ine-grained instance level. Figure 8(a) depicts
the dependency graph and the PDG.
Since computational partitioning essentially involves dividing the loop range, a line perpendicular to the �-

dimension can be drawn on the dependency graph to represent partitioning along the �-dimension. All dependency
arrows intersecting this line correspond to data that requires synchronization between partitions through
communication, which can be categorized into the following two types: (1)dependencies between diferent
instances of the same statement, and (2)dependencies between two diferent statements. The irst type appears in
the PDG as self-loops (as red arrows), while the second type is represented as unidirectional arrows between two
statements (as blue arrows).
The irst type establishes a clear execution order among instances of a statement, where each subsequent

instance depends on the preceding one, thereby creating a dependency chain. Consequently, one partition must
wait for the completion of the previous one, which can lead to process idle time if these partitions are assigned to
diferent processes. Properly allocating computational partitions across other dimensions can maximize process
utilization.

For the second type, as long as there is a unidirectional dependency between two statements, either completing
all instances within a single partition irst (corresponding to loop fusion, i.e., using tiles as the minimal computa-
tional unit) or executing instances of one statement across multiple partitions irst (corresponding to loop ission)
can ensure correctness. This lexibility allows using instances as computational partition units to expose greater
parallelism.

4.2 Optimal Partition Searching

4.2.1 Preprocessing. The dependency analysis is not a novel contribution of this work, but it is essential for
extracting loop structures and data read-write states. Based on these results, we perform preprocessing to expose
additional parallelism by extracting potential parallel regions, handling local arrays within loops, and applying
loop ission.

To avoid the inluence of non-accessing loop indices on access analysis, we represent the loop hierarchy using
a tree structure called a loop tree. Each node in the loop tree encompasses all access information within that loop
level and its nested sub-loops. We identify potential parallel regions by conducting a breadth-irst traversal of
the entire loop tree. This process ilters out nodes where the loop index does not afect array accesses, thereby
simplifying the loop tree to focus solely on the components relevant to parallelization.

For the nested loops represented by the simpliied loop tree, we search for a reference array, each dimension of
which is accessed by loop variables at each loop level. Based on the access patterns to this array, we standardize

ACM Trans. Arch. Code Optim.
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for (i = 1; i < N; i++)

A[i][j] = f(A[i][j], A[i-1][j]) S3
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Fig. 8. Handling of local arrays.

loop variables that exhibit identical memory access behaviors across diferent loops, ensuring consistent treatment
of distinct variables, such as � and � accessing the irst dimension of � in �5 and �6 from Figure 9(a).

When reference array is present, local arrays with fewer dimensions than the reference array may impact the
code parallelizability. As discussed in Section 2.3, the optimal parallelization of the complete ADI code involves
partitioning both the � and � dimensions. For demonstration purposes, we continue to use the portion of ADI
code in Figure 8(a). The local array � deined within the �-dimensional loop (whether inside or outside the loop
body) introduces multiple dependencies on the same position within � across diferent � iterations, including
WAR and WAW dependencies. These dependencies form a loop from �1 to itself and bidirectional arrows between
�1 and �2, indicating complete non-parallelizability along the � dimension.

Privatizing array � for each iteration � can eliminate dependencies described above, thereby enabling paral-
lelization. However, this approach introduces additional inter-process communication overhead in distributed
environments. As shown in Figure 8(b), the preceding process must send all � [3] from diferent � instance to
the subsequent process, as the latter requires � [3] to compute its irst � = 4 iteration. Although it is possible
to perform one communication for each � instance, frequent communication introduces more overhead from
starting each. Additionally, because array � is privatized, the two processes must synchronize their computations
for the same � instance, leading to additional waiting overhead.
By performing Array Promotion as depicted in Figure 8(c), we move the deinition of local arrays out of

the loop body and promote their dimensions to accommodate the loop levels. This operation eliminates data
dependencies along the � dimension on the dependency graph, allowing processes to compute all instances of
�1 before �2 without waiting. Simultaneously, it provides the necessary array space to store the process data
that requires communication. The inal one-time communication avoids the overhead associated with frequent
communication initiations. The additional memory footprint introduced by Array Promotion will be further
discussed and addressed in Section 4.3.

After exposing more of the code’s parallelism, we greedily apply loop ission to the output loop tree generated
by the previous steps, decomposing nested loops into independent loops as much as possible. The objective of
loop ission is to independently analyze the parallelism within each loop, search for computational partitions,
and insert communication primitives with iner granularity.
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Figure 10(a) illustrates the preprocessing applied to the complete ADI code. It extracts potential parallel regions
excluding the � -loop, standardizes loop variables based on the reference array �, promotes the dimensions of the
local array �, and performs loop ission wherever possible, as each statement can be issioned after �’s promotion.

(a) Original Code of complete ADI (b) PLUTO-Distmem Method

for (t = 0; t < T; t++)

for (j = 1; j < N; j++)

for (i = 0; i < N; i++)

B[i] = h(i, j) S1

for (i = 1; i < N; i++)

A[i][j] = h’(B[i], B[i-1]) S2

for (i = 2; i < N; i++)

A[i][j] = f(A[i][j], A[i-1][j]) S3

for (i = N-1; i > 0; i--)

A[i][j] = f’(A[i][j], A[i+1][j])  S4

for (k = 1; i < N; i++)

for (j = 2; j < N; j++)

A[k][j] = g(A[k][j], A[k][j-1])   S5

for (j = N-1; j > 0; j--)

A[k][j] = g’(A[k][j], A[k][j+1])  S6

for (t = 0; t < T; t++)

for (j = j_start; j < j_end; j++)

for (i = 0; i < N; i++)

B[i] = h(i, j) S1

for (i = 1; i < N; i++)

A[i][j] = h’(B[i], B[i-1]) S2

for (i = 2; i < N; i++)

A[i][j] = f(A[i][j], A[i-1][j]) S3

for (i = N-1; i > 0; i--)

A[i][j] = f’(A[i][j], A[i+1][j])  S4

  MPI_Alltoall(A) 

for (k = k_start; k < k_end; k++)

for (j = 2; j < N; j++)

A[k][j] = g(A[k][j], A[k][j-1])   S5

for (j = N-1; j > 0; j--)

A[k][j] = g’(A[k][j], A[k][j+1])  S6

i

j

k

j

Partition for A

MPI_Alltoall

Fig. 9. Complete ADI code and Pluto-Distmem Method.

4.2.2 Searching. From the previous analysis, we draw two conclusions. (1) The communication cost induced by
any computational partition, regardless of the partition shape, remains constant along speciic dimensions. As
illustrated in Figure 3(d), two diferent partition shapes drawn on the two-dimensional plane result in the same
arrows, which represent the communication requirements. The critical factor determining the communication is
whether each dimension has been partitioned. (2) If a dimension is partitioned in a subsequent loop but was not
partitioned in a previous loop, or vice versa, all processes must synchronize the updated data from the previous
loop through all-to-all communication to maintain consistency. In Figure 5(c) and Figure 9(b), Pluto-Distmem’s
parallelization of diferent dimensions across the two loops in ADI results in an all-to-all communication of �.

To search a parallel scheme that minimizes the overall communication cost across the entire code, we derive a
subtree for each array from the loop tree obtained in Section 4.2.1. Each node within these subtrees corresponds
to a read or write operation on the respective array. We further abstract the analysis by assigning a lag to each
loop index within the subtree, representing the data dependency between the array dimension and the loop
dimension: 0 indicates direct data access in this dimension, demonstrating synchronization-free parallelism; 1
represents cross-iteration access that can satisfy dependency requirements through inter-process communication;
2 denotes serial code or complete access to the array along this dimension, preventing parallelism; -1 signiies
no data access for the array along this dimension. From each array � , we abstract a� × � lag matrix F� from
its subtree, where � is the number of issioned nested loops, and � is the maximum depth of the loop tree,
corresponding to each loop level.

The searching process for a partitioning scheme can be abstracted as a dynamic programming problem, aiming
to ind a path through the two-dimensional lag matrix, as detailed in Algorithm 1. Speciically, if there exists
a dimension without cross-iteration dependencies in all lag matrices, partitioning the computation along this
dimension will incur no communication cost (lines 4-7).
In the general case, we traverse the matrix to ind the overall optimal scheme. We deine a two-dimensional

matrix opt� of the same size as �� , where ��� (�, �) represents the optimal solution with its communication cost
from the matrix’s starting point (0, 0) to the current point (�, �). The irst row and irst column of ��� serve as
boundary conditions, with their optimal values initialized accordingly (line 8). For each point (�, �) in the matrix
beyond these boundaries, the optimal solution is derived from the optimal solutions of the point above (� − 1, �)
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Algorithm 1 Search for Partition Scheme with Minimum Communication

1: Input: An M*N lag matrix F generated from the subtree for each array
2: Output: A speciic partitioning scheme
3: for each dimension � do
4: for each matrix � do
5: if all lags in a dimension are 0 then
6: Partition in this dimension without communication
7: Exit algorithm

8: for each matrix � do Initialize irst row and irst column
9: for each matrix � do
10: for each row do
11: for each point (�, � ) in the row do
12: if ��� (� − 1, � ) includes dimension � and � (�, � ) its ��� (� − 1, � ) then
13: ��� (�, � ) = ��� (� − 1, � )
14: else
15: if ��� (�, � − 1) can be extended by adding partitioning in dimension � then
16: ��� (�, � ) = ��� (�, � − 1) −�����_���� (�, � )
17: else
18: Choose lowest cost between left ��� (�, � − 1) and upper ��� (� − 1, � ) connected with all-to-all communication

19: Aggregate partitioning patterns for each ��� (�, � − 1) =
⋂
���� (�, � − 1)

and the point to the left (�, � − 1). The state transition equation, which represents the communication cost, is
deined as follows (lines 9-18).

opt(�, �) =





opt(� − 1, �), if (�, �) its upper;

opt(�, � − 1) −merge_cost(�, �), if (�, �) its left;

min{opt(� − 1, �) + alltoall_cost(� − 1, �), opt(�, � − 1)}, else.

We deine merge_cost(i,j) as the diference in communication cost when adding the j-dimension of point
(�, �) to the partitioning scheme recorded in ��� (�, � − 1). As further explained in Section 4.2.3 with Figure 11(a)
and (b), partitioning along three dimensions reduces the communication cost compared to partitioning along
two dimensions. As stated in Conclusion (1), only the choice of dimensions afects the cost. alltoall_cost(i-
1,i) is deined as the communication cost incurred when synchronizing data between processes via all-to-all
communication between the (i-1)-th and i-th loops. This operation implies that the two loops adopt diferent
partitioning patterns, as outlined in Conclusion (2), where consecutive rows using the same partitioning pattern
exhibit locally optimal communication cost.
After completing the traversal of each row, we take the intersection of the optimal solutions ��� (�, � − 1)

for each matrix, aggregating the partitioning patterns for the loop. Ultimately, ��� (� − 1, � − 1) records the
partitioning scheme and the corresponding communication cost for the entire program (line 19).

Figure 10(b) demonstrates the searching process for complete ADI. In the � matrix for � and the promoted �, 1
indicates cross-loop access within that loop, and the corresponding ��� matrix records the results of the search.
Since neither the � nor the � dimension consists entirely of 0, parallelization cannot be achieved by partitioning
along just one of them (line 4-7). From (�2, �) to (�4, �), both ���� and ���� record partitioning along the ( �)

dimension, as their corresponding values in the � matrix are all 0 (line 12-13).
In ����, (�5, �) cannot follow the same pattern as (�4, �) because �� matrix records 1 in the corresponding

position. However, since both the dimensions � and � have only one element marked as 1, the rest being 0, it is
feasible to partition simultaneously between these two dimensions. Merging the � dimension into (�5, �) results in
lower communication cost compared to performing two separate all-to-all communications, one between �2 and
�3 and the other between �4 and �5, as two-dimensional partitioning does not require all-to-all communication
(line 15-16). Finally, ���� records (� + �) at both (�5, �) and (�6, �), and its intersection with ���� ’s record of ( �)
at (�6, �) results in the inal partitioning scheme being (� + �) (line 19).
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for j: (1,N)

for i: (0,N)    S1

for j: (1,N)
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for i: (2,N)    S3

for j: (1,N)

for i: (N-1,0) S4
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W:A[i][j]
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Fig. 10. Example of preprocessing and searching.

4.2.3 Mapping. The result of searching typically involve partitioning instances and arrays across multiple
dimensions. In this section, we explain how to map these multi-dimensional partitions to diferent processes to
prevent load imbalance and process idleness, thereby ensuring overall execution time. Note that this work does
not address the topology relationship between processes and processors, such as placing certain processes on the
same processor to further reduce inter-process communication time. This aspect is orthogonal to our work.

Consider the ADI code within a three-dimensional context in Figure 11, where the array� is three-dimensional
and each nested loop has dependency chains across diferent dimensions. Our objective is to seek a parallel
scheme for partitions across multiple dimensions to avoid the synchronization costs associated with all-to-all
communication, which is the approach taken by Pluto-Distmem.

i j

k

(a)

i j

k

(b)

for (i)

for (j)

for (k)

A[i][j][k] = h(A[i][j][k], A[i][j][k-1])

for (i)

for (k)

for (j)

A[i][j][k] = g(A[i][j][k], A[i][j-1][k])

for (j)

for (k)

for (i)

A[i][j][k] = f(A[i][j][k], A[i-1][j][k])

p0

p1

p2

p3

Fig. 11. Diferent ways of mapping partition to processes.

Figure 11(a) and (b) illustrate partitioning schemes in two and three dimensions, respectively. Even in the
presence of dependency chainsÐnecessitating sequential computation from 0 to � in each dimensionÐall
processes are computing at any moment within each loop, with no idle time. Both partitioning schemes exhibit a
communication complexity of � (� 2), signiicantly outperforming the � (� 3) complexity required for all-to-all
communication.
Speciically, the partitioning scheme in (a) requires inter-process communication only in the irst two loops

because each process holds complete data along the i-dimension, eliminating the need for communication in
the last loop. In contrast, partitioning scheme in (b) requires communication in all three loops. The diference
between the two schemes lies in the amount of communication data required for the same number of processes
(e.g., four in Figure 11). Scheme (a) requires communicating the data contained within six planes between all
processes, whereas scheme (b) only requires that within three planes, as indicated by the purple planes in
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Figure 11. Algorithm 1 derives the partitioning scheme shown in (b). By integrating the third dimension into the
scheme of the irst two dimensions, the algorithm identiies a partitioning scheme with reduced communication
costs (line 15).
The mappings in Figure 11(a) and (b) ensure that each process performs 1/� of the total computation, guar-

anteeing load balancing and eliminating idle waiting. The partition mapping is computed as follows. For a
�-dimensional array being partitioned, all partition blocks in � − 1 dimensions are mapped to diferent processes,
and rotational shifting distribution is performed along the remaining dimension. Assuming the number of
processes is � = ��−1, where � is a positive integer, for a process � with a computational partition in � − 1

dimensions, if the partition block in dimension � is at coordinate �� , then the coordinate of process �’s next
partition block in dimension � is (�� + 1)mod � or (�� − 1)mod � .
Figure 12(a) and (b) show the inal results of the complete ADI code using Arachne method, along with the

corresponding partitioning and mapping of �. The number of stages equals the number of processes (four in this
case). Each process calculates the start and end index of the computation partition for each stage based on its
MPI rank. For statements with dependencies along the � dimension, �1 to �3 are computed sequentially from
� = 0 to � = � − 1, corresponding to stage 0 to 4, while �4 is computed in the reverse order. For �5 and �6, which
have dependencies along the � dimension, stages are partitioned with reference to the � dimension.

calculate_loop_range_for_each_stage(mpi_rank)

for (t = 0; t < T; t++)

for (stage = 0; stage < P; stage++)

if (stage != 0) MPI_Irecv(buffer)

for (j = j_start; j < j_end; j++)

for (i = i_start-1; i < i_end; i++)

B[i] = h(i, j) S1

if (stage != 0) buffer_to_array(A)

for (i = i_start; i < i_end; i++)

A[i][j] = h’(B[i], B[i-1]) S2

for (i = i_start; i < i_end; i++)

A[i][j] = f(A[i][j], A[i-1][j]) S3

if (stage != P-1) array_to_buffer(A)

if (stage != P-1) MPI_Isend(buffer)

for (stage = P-1; stage >= 0; stage--)

if (stage != P-1) MPI_Irecv(buffer)

for (j = j_start; j < j_end; j++)

if (stage != P-1) buffer_to_array(A) 

for (i = i_end; i > i_start; i--)

A[i][j] = f’(A[i][j], A[i+1][j])  S4

if (stage != 0) array_to_buffer(A)

if (stage != P-1) MPI_Isend(buffer)

  same_stage_logic_for_S5_and_S6 

(a) ARACHNE Method (b) Mapping
!� processes for array A)

for stage: (0,P)

for j: (j_start,j_end)

for i: (i_start-1,i_end)  S1 B[i][j]

for i: (i_start,i_end)    S2 B[i][j],B[i-1][j]

for i: (i_start,i_end)    S3

for stage: (P-1,0)

for j: (j_start,j_end)

for i: (i_end,i_start) S4

for stage: (0,P)

for i: (i_start,i_end)

for j: (j_start,j_end)    S5

for stage: (P-1,0)

for i: (i_start,i_end)

for j: (j_end,j_start) S6

3.Fusion back

1.Expand loop

2.Demotion
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Fig. 12. Example of mapping and optimization.

4.3 Communication Optimization

Section 4.1 introduces two types of dependencies. One type leads to dependency chains, which can be parallelized
through the multi-dimensional mapping discussed in Section 4.2.3. The other type allows avoiding communication
by overlapping instances from other computational partitions. In a distributed environment, the computational
overhead of accessing data is signiicantly lower than the communication cost.

Taking the example in Figure 13(a), where yellow lines represent the original computational partitions identiied
by the algorithm. We observe that for dependencies between �1 and �2 (indicated by blue lines), �1 does not
have any additional dependency requirements in the preceding computational partition. Represented by green
lines, a new computational partition is created by utilizing overlapping instance (as shown in Figure 13(b)). In
this new partition, an additional instance of �1 is computed by the subsequent process to avoid communication
induced by the second type of dependency.
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Fig. 13. Comparison of Original partition and partition with overlap.

The communication avoidance algorithm, as illustrated in Algorithm 2, achieves communication avoidance by
expanding the loop ranges for each process. This expansion allows the computation to overlap with instances
from the previous partition. Here, �� and�� represent the cross-iteration read and write requirements of an
array � within a loop, respectively, while �� denotes the updated requirements after expansion. The set ��� is
the collection of all the latest �� during the processing, and � represents the inal expansion computed for the
current loop.

Algorithm 2 Loop Expansion for Communication Avoidance

1: Input: Loops with original computational partitions
2: Output: Expanded loops applied partitions with overlapping
3: for each issioned loop, traversed backward do
4: for each variable � occurring in the loop do
5: if � is write-only and�� ∈ ��� then
6: Expand this loop as � = argmax� ∈��� |� |

7: for each variable � occurring in the loop do
8: if � is read-write and exist inter-iteration access for�� then
9: �� =��

10: if � is read-only and exist inter-iteration access for �� then
11: if �� ∈ ��� then
12: �� = argmax� ∈{�� ,�� } |� | + �

13: else
14: Calculate expand requirement for � as�� = �� + �
15: Add�� into ���

16: if Still have�� in ��� are unsatisied then
17: Satisfy all remaining�� via communication

Take the code shown in Figure 14 as an example, corresponding to the code partitioned along the � and �

dimensions in Figure 8(c), where the start and end value of � and � difer for each process. The speciic logic for
calculating these range is omitted. �3 satisies the irst type of dependency, where its cross-iteration read (� − 1) is
necessarily fulilled through communication. Since �3 does not have a cross-iteration write (�� = 0), there are
no expansion requirements (�� = 0) for this step. If a cross-iteration write existed, the expansion requirements
would need to be recorded, as each array element involves the computation of multiple instances. This would
require expanding within the corresponding process to ensure that the writes to the communication bufer are
correct (lines 8-9). As �3 has no expansion requirements, �2 does not need to be expanded. Additionally, the
array � in �2 does not belong to the dependency chain, so �� are recorded (lines 13-15), and loop expansion is
completed in �1 (lines 5-6).
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Figure 12(c) shows the optimizations achieved after searching. Using Algorithm 2, loop expansion in Figure 14
is implemented to satisfy communication avoidance, after which � is demoted. Subsequently, the original loops
are re-fused according to diferent stages to enhance data locality.

for (t = 0; t < T; t++)
for (stage = 0; stage < P; stage++)
for (j = j_x; j < j_y; j++)
for (i = i_x-1; i < i_y; i++)
B[i][j] = h(i, j)                 S1 E=argmax{t∈Req}|t|=TB=-1

for (i = i_x; i < i_y; i++)
A[i][j] = h’(B[i][j], B[i-1][j]) S2 Req{TA=0}, RB=-1    E=argmax{t∈Req}|t|=0 TB=RB+E=-1, Req{TA=0, TB=-1}  

for (i = i_x; i < i_y; i++)
A[i][j] = f(A[i][j], A[i-1][j])   S3 RA=-1, WA=0    TA=WA=0, Req{TA=0} 

Fig. 14. Example of loop expansion.

This method is particularly efective for local arrays, which are typically deined within a loop and irst written
at the level of the loop to which they belong. This means their instances have no preceding dependencies, creating
a condition that allows for overlapping computations to avoid communication.
In Section 4.2.1, we promote the dimensions of local arrays to accommodate the needs for inter-process

communication, which results in additional memory footprint. Once communication for a local array is completely
eliminated through overlapping computation, we demote it back to its original deinition to reduce runtime
memory usage and leverage data locality. Additionally, if there is no need for communication between issioned
loops, we re-fuse them back into their original nested loop structure.

4.4 Data Distribution

The objective of data distribution is to reduce the memory footprint of each process. After computational
partitioning, a process only needs to access a portion of the arrays, creating opportunities for array partitioning.
There are two common computational modes in HPC applications: one involves solving a global numerical
solution across the entire computational space, and the other simulates the micro-behavior at each grid point.
Both modes are directly amenable to data distribution and do not require the addition of any extra computational
logic or data structures to adapt to distributed parallelization.
Two key factors must be considered: (1) ensuring that the size of data deinitions for each array within each

process meets the needs of the entire program under various partitioning patterns; and (2) deining additional
data space to accommodate data dependencies in computations. The limitation for applying this method of
data distribution is that the code’s memory access patterns only require data from neighboring computational
partitions.

We utilize continuous memory spaces and array reshaping to replace the original array deinitions, remapping
memory accesses from the original complete arrays to the new reshaped arrays. Speciically, additional dimensions
are used to index the stages of the computation. If all arrays involved in nested loops can be partitioned, the entire
loop index and range are remapped. However, if only some arrays within a loop can be partitioned and other
data need to be maintained across all processes, the loop remains unchanged, and only the memory accesses for
the partitioned arrays are remapped. The corresponding code modiications for these two cases are shown in
Figure 15 and Figure 16, respectively.

4.5 Limitations

The novelty of this work lies in the Searching and the Optimization process following the acquisition of de-
pendency information, without introducing new methods for static dependency analysis. Therefore, existing
static dependency analysis techniques afect Arachne’s applicability. Arachne is not suitable for user codes
with irregular accesses to the array, such as those using variables, pointers, or array elements as indices. These
runtime-dependent access patterns are beyond the capabilities of static analysis.
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i

j

A[P][N/P][N/P+2]A[N][N]

double A[N][N]

calc_loop_range_for_stages(mpi_rank)

for (stage=0; stage<P; stage++)

for (j=j_start; j<j_end; j++)

for (i=i_start; i<i_end; i++)

A[i][j] = f(A[i][j], A[i-1][j])

double *A = malloc(sizeof(double)*N*(N/P+2))

double (*A)[N/P][N/P+2] = (double(*)[N/P][N/P+2])A

for (stage=0; stage<P; stage++)

c = calc_cell_index_for_stage(mpi_rank,stage)

for (i=0; i<N/P; i++)

for (j=0+1; i<N/P+2; j++)

A[c][i][j] = f(A[c][i][j], A[c][i-1][j])

p0 p1

p2 p3

distribution

Fig. 15. Distribution of all arrays.

double C[N][N]

calc_loop_range_for_stages(mpi_rank)

for (stage=0; stage<P; stage++)

for (k=0; k<N; k++)

for (i=i_start; i<i_end; i++)

for (j=j_start; j<j_end; j++)

C[i][j] += A[k][i] * B[k][j]

+  B[k][i] * A[k][j]

double *C = malloc(sizeof(double)*N*N/P)

double (*C)[N/P][N/P] = (double(*)[N/P][N/P])C

for (stage=0; stage<P; stage++)

for (k=0; k<N; k++)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

c = calc_cell_index_from_index(mpi_rank,i,j)

if (c==-1) continue

C[c][i%(N/P)][j%(N/P)] += A[k][i] * B[k][j]

+  B[k][i] * A[k][j]

C[N][N]

A[N][N]

B[N][N]

A[N][N]

B[N][N]

C[P][N/P][N/P]

distribution

i

j

Fig. 16. Distribution of part of arrays.

Although the proposed method works well for array accesses using loop indices, complex aine access patterns
that create dependencies across all dimensions will prevent the Partition Searching process from inding a
partition scheme suiting multiple loops, leading to non-reduced communication costs equivalent to the all-to-all
communication seen in Pluto-Distmem’s outcome.

5 Directive Design

We developed a set of compiler directives as the front-end for Arachne to give users better control over the data
distribution and parallel logic, extending beyond the automatic searching driven by static analysis in Arachne’s
back-end.

5.1 Design Principles and Advantages

Our directive design in Figure 17 is based on the widely-used and user-friendly OpenMP syntax. One advantage
of adopting OpenMP is its ease of use, enabling users to specify complex parallel logic with minimal learning and
fewer intrusive code modiications.

Another beneit is the ability to combine OpenMP directives to achieve multi-level parallelism: between nodes,
through automatically generated MPI code for process-level parallelism, and within nodes, using OpenMP for
thread-level parallelism. This approach improves program scalability across nodes while maximizing resource
utilization and computational eiciency on clusters by leveraging both distributed and shared memory systems.
Thus, our work is orthogonal to shared memory optimization techniques, such as the polyhedral model.

5.2 Partition of Computation

Computational partitioning is crucial for parallelization. For users unfamiliar with distributed parallelism or the
parallelizable parts of their code, no extra information is requiredÐsimply use start and end directives to mark
parallelizable regions. Data dependency analyzer can automatically manage inter-array dependencies for most
access patterns.

For users who understand their code’s dependencies and parallel potential, with the partition directive, the
dimension clause allows specifying one or more dimensions for computational partitioning. We assume users
have deeper knowledge of their code than any static analysis, enabling them to uncover parallel opportunities
beyond what dependency analysis can detect. Additionally, users can provide implicit information that static
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#pragma arach {start | end}

#pragma arach partition [clause[,clause]…]
for-loops

clause:
dimension(list)
depend(var-dims[;var-dims]…)
exclude(list)
reduction(operator:list)

var-dims:
var,index:dim[[,dim]…]->dim[[,dim]…]

#pragma arach distribute data(list) [clause]
clause:

dimension(list)

#pragma arach broadcast data(list)

#pragma arach {scatter | gather | allgather} 
data(list) [clause]
clause:

dimension(list)

#pragma arach reduce(operator:list)
[distribute] [all]

structured-block

operator:
+, *, &, |, ^, &&, ||, max, min

#pragma arach single {root | map}
structured-block

#pragma arach barrier

Partition of Computation Parallel LogicData-related Options 

Fig. 17. Directives design corresponding to three categories.

analysis cannot access, expanding the potential for parallelization. For example, the depend clause allows users
to explicitly specify data dependencies that static analysis might miss, such as WAW dependencies from indirect
array accesses. In HPC applications, using arrays as indices for sequential or blocked computations is common.
Applying the depend clause to the data array avoids the limitations of static analysis when accessing data through
an index array. The exclude clause lists variables that should not be partitioned, typically local loop variables or
those unrelated to loop dimensions. Variables not excluded will be partitioned based on the search results. The
reduction clause, which serves a similar purpose, will be explained later and can be used with or independently
of computational partitioning.

5.3 Data-Related Operations

In migrating to distributed environments, users may handle arrays in diferent ways. For smaller data sets,
frequent read-only access, or cases where all data must be initialized on a single node before distribution, users
might prefer each process to maintain a complete data deinition. This minimizes inter-process communication
and memory remapping overhead. For larger arrays that need to it within node memory limits, data distribution
is preferred. Thus, in distributed programs, the data view can be a mix of complete and distributed arrays.

We provide the distribute directive for users to declare array distribution at the data deinition stage, with
arrays defaulting to a complete deinition if this directive is not used. Distribution follows the computational
partition. To facilitate data movement across nodes during partitioning, we ofer the following directives: (1)One-
to-many: broadcast copies data from the root to all processes, while scatter distributes data from the root to all
processes; (2)Many-to-one: gather consolidates data from all processes to the root; (3)Many-to-many: allgather
collects data from all processes and distributes it to all, equivalent to gather followed by broadcast. Users can
also specify dimensions for scatter/gather/allgather using an optional dimension clause, corresponding
to the computational partition dimensions. If not speciied, the system automatically determines the target
processes based on the partitioning.

5.4 Parallel Logic

We provide a variety of directives to support complex parallel logic in distributed environments. For global nu-
merical problems, the program reduces data from all processes to derive a global result. Without data distribution,
users can use directives to gather data to the root for inal computation. With data distribution, each process
reduces its portion locally, and the results are aggregated to produce the global outcome. The reduce directive
supports this reduction pattern across nodes, ofering binary operations and max/min options. The all clause
ensures the results are updated across all processes.
For process execution, some code logic should be executed by only one process in parallel regions, such as

special data handling by the root or processing edges of the computational domain. The single directive speciies
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that only one process executes the code block, with the root or map clause designating the speciic process. The
barrier directive establishes a synchronization point, ensuring all processes reach the barrier before proceeding
to maintain data consistency.

6 Evaluation

6.1 Setup

Our experiments were conducted on a distributed cluster comprising 64 nodes, interconnected by Mellanox
MT2892 Family ConnectX-6 Dx with a network speed of up to 100Gbps. Each node within the cluster is equipped
with dual Intel Xeon Gold 6248 CPUs, each ofering 20 cores running at 2.50GHz, and 192GB of memory. The
nodes are operated under Linux kernel version 4.18.0 and utilize GCC version 9.3.0 for compilation, coupled with
OpenMPI 4.1.2 for managing distributed processes.
Arachne integrates a modular static dependence analyzer, which can be decoupled and replaced with other

prevalent static dependency analysis tools, such as the Integer Set Library (ISL)[3]. We implemented a simple
static dependence analyzer targeting loop and array accesses and the partition searcher as LLVM passes[6].
Additionally, the code generator was developed using Clang LibTooling[5]. The complete system encompasses
over 12,000 lines of C++ code. We compare Arachne with Pluto-Distmem, which generates distributed code
using default parameters (‘śisldep ślastwriter śtile śparallel śdistmem ścommopt‘).

6.2 Benchmarks

Our performance evaluation focuses on widely used benchmarks and applications within the HPC domain,
speciically in areas such as linear algebra, physical simulations, and stencil computations. We selected eight
small-kernel applications from PolyBench[1] and ive real applications from the NAS Parallel Benchmarks
(NPB)[2, 4]. This selection is three-fold.

(1)Representation of Scientiic Computing Patterns: Both NPB and PolyBench cover a wide range of
computational patterns common in HPC, relecting typical scenarios. For instance, the alternating direction
implicit (ADI) method and successive over-relaxation (SOR) method are included in NPB’s SP and BT benchmark,
while the FT benchmark utilizes data across entire dimensions, demonstrating comprehensive computational
diversity.

(2)Capability to Search Parallel Schemes from the Static Analysis: Our evaluation assesses the efective-
ness of deriving parallel schemes solely from static analysis, without adding any directives to PolyBench, FT, SP
and BT. For the remaining unselected NPB benchmarks, IS and CG involve random memory access, MG uses the
same pointer to reference diferent arrays, and LU is parallelizable due to its mathematical properties, though
dependency analysis suggests otherwise. These cases exceed the capabilities of static analysis, as discussed in
Section 4.5, and therefore are not included in the evaluation.

PolyBench’s simple computational and data access patterns allow Pluto-Distmem to generate adequate parallel
code. However, for NPB, which features more complex constructs such as local arrays and result reduction,
Pluto-Distmem fails to transform. Thus, we compare Arachne against C++ versions of NPB-MPI, which are
based on the oicial Fortran versions[4] and achieve near-optimal performance.

(3)Diferent Types of Communication: The selected benchmarks also vary in their communication require-
ments. ADI and SP involve neighbor communications, Floyd relies on broadcasting, and FT requires all-to-all
between diferent partitioning patterns. Polybench benchmarks not unselected, which exhibit sync-free paral-
lelism, making them less suitable for evaluation. The problem sizes for all benchmarks are listed in Table 1.
Besides Pluto-Distmem, no other comprehensive system was found that can generate distributed parallel

code from serial implementations. We evaluated scalability from 1 to 64 nodes. To focus on communication
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DescriptionProblem sizeBenchmark

Alternating Direction ImplicitT = 500, N = 4096adi

Floyd-Warshall AlgorithmN = 6144floyd

Finite-Difference Time-DomainT = 1200, N = 8192fdtd

Jacobi MethodT = 1200, N = 8192jacobi

Covariance Matrix ComputationN = 8192covcol

Double Symmetric Rank-2k UpdateN = 8192dsyr2k

Triangular Matrix-Matrix MultiplicationN = 8192strmm

Triangular Matrix MultiplyN = 8192trmm

Embarrassingly ParallelM = 32EP

Data Cube10000000DC

Fourier Transform1024 * 1024 * 512FT

Scalar Pentadiagonal160 * 160 * 160SP

Block Tri-diagonal160 * 160 * 160BT

Table 1. Problem size of benchmarks.

packing + otherscomm-time + waitcompute

Fig. 18. Normalized time ratio.

performance and avoid interference from intra-node process interactions, we ran a single process per node and
limited each process to a single OpenMP thread.
For generation time, simple benchmarks like those in PolyBench typically complete end-to-end in under 1

second, making a detailed analysis unnecessary. However, for more complex benchmarks like SP, which contains
over two thousand lines of code and deeply nested loops, our static analyzer requires around 180 seconds to
analyze dependencies. Despite this, the actual search and generation time remains under 1 second.

6.3 Time Breakdown

In this section, we analyzed the time breakdown for PolyBench on a 32-node setup to compare the parallel
schemes generated by Arachne and Pluto-Distmem, as shown in Figure 18. This node count highlights the
diferences in computation scale and communication volume between the two schemes. By examining the time
spent in diferent phases, we can better understand the performance diferences observed in our scalability
experiments.

In ADI and Floyd, Arachne showed signiicant performance improvements over Pluto-Distmem. As discussed
earlier, Pluto-Distmem requires frequent all-to-all communication, with each process sending its computed
segment to all others during each iteration, resulting in communication volumes of �����_���� × (���_���� − 1).
This leads to substantial overhead for packing and unpacking data. In contrast,Arachne only communicates array
edges per iteration, reducing communication volume by several orders of magnitude. For FDTD and Jacobi, the
parallel schemes identiied by Arachne and Pluto-Distmem were similar, resulting in only slight performance
diferences due to runtime variations. Consequently, performance gains were less pronounced.

The latter four PolyBench applications exhibit sync-free parallelism, where each process performs computations
independently without requiring data from other processes. In Covcol and Dsyr2k, a signiicant amount of waiting
time was observed. Pluto-Distmem did not account for the number of instances when mapping dimensions to
processes, leading to load imbalances and causing earlier inishing processes to wait at synchronization points.
In contrast, Arachne ensures an even partition of workloads, eliminating synchronization waiting times. For
STRMM and STMM, Arachne showed modest improvements over Pluto-Distmem, primarily due to reduced
waiting times and lower runtime overhead from Pluto-Distmem.

6.4 Scalability

This section presents the scalability of parallel code generated by Arachne and Pluto-Distmem on a constant
data size across diferent node conigurations, as shown in Figure 19. For simpler benchmarks like PolyBench,
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Pluto-Distmem can generate one parallel scheme using the polyhedral model, but this often results in signiicant
inter-process communication and uneven load distribution.

# of processes

adi floyd covcol dsyr2k

fdtd jacobi strmm trmm

468.2438.7 391.3 393.4 411.5

620.9614.9 263.4265.4 291.5296.8 271.2262.7

302.9

Fig. 19. Result of scalability experiment on PolyBench.

In the case of ADI, Arachne underperforms compared to Pluto-Distmem at lower parallelism (4 nodes), as the
polyhedral model’s loop tiling better exploits cache locality. For both ADI and Floyd, as the number of processes
increases, the performance of Pluto-Distmem decreases due to the linear scaling of communication costs with
the number of processes, overshadowing the beneits of computational parallelism. In contrast, Arachne’s
optimal computational partition continues to improve performance as parallelism increases.
For Covcol and Dsyr2k, Arachne consistently outperforms Pluto-Distmem across all parallelism levels, as

Pluto-Distmem’s poor load balancing leads to process waiting times. Arachne’s even partitioning ensures no
waiting, yielding better performance. In FDTD, Jacobi, STRMM, and TRMM, the improvements with Arachne

over Pluto-Distmem are modest, with the performance enhancement ratio increasing with the number of
processes.
The results in Table 2 show the performance of NPB benchmarks, where Arachne’s transformed versions

are compared to C++ versions of oicial NPB-MPI. Arachne consistently achieves more than 95% of the oicial
version’s performance. For FT, SP and BT, which involve nested loop array accesses, no manual directives were
used. In SP and BT, optimal computational partitioning requires mapping two dimensions across all processes,
meaning the number of processes per dimension must be equalÐi.e., the total number of processes should be a
square number.
The performance loss in FT, SP and BT stems from Arachne overestimating the required communication

volume compared to the optimal implementation. To avoid ininite loop expansion in nested calls, Arachne uses
the computational domain (i.e. a function) as the basic unit, which leads to some redundant communication before
each computational domain. For EP and DC, which exhibit strong scalability, the parallel performance scales
linearly with the number of processes. Unlike traditional loop-indexed array access patterns, their parallelism
requires user-speciied computational partitions and result reduction directives. Arachne’s code generation
based on reduction directives closely matches the performance of oicial MPI versions.
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BTSPFTDCEP

OursOfficialOursOfficialOursOfficialOursOfficialOursOfficialProcs

826.50s818.72s410.21s406.33s1037.19s1029.48s104.36s103.83s346.74s345.56s1

423.41s417.25s217.49s213.84s323.14s321.25s27.75s26.95s87.15s86.70s4

////191.22s188.78s13.92s13.47s43.60s43.53s8

127.52s124.14s62.95s60.76s89.68s88.29s7.11s6.73s21.96s21.73s16

////49.03s48.66s3.51s3.25s11.23s10.87s32

47.11s45.23s23.68s22.61s26.33s24.85s1.85s1.79s5.79s5.67s64

97.30%96.77%98.04%95.58%98.60%
Average

Efficiency

Table 2. Result of scalability experiment on NPB.

Serial Pluto-Distmem NPB-MPI Arachne

2211820889

Fig. 20. Result of memory usage.

6.5 Load Imbalance

In this section, we address another key factor afecting performance in parallel computing: load balancing. In the
generated code, due to the presence of barriers, the end-time discrepancy across processes is less than 1 second,
meaning that waiting for one process delays all others. Figure 21(a) shows the load imbalance across 32 processes.
By using dimensional partitioning and shifted mapping, Arachne signiicantly reduces load imbalance compared
to Pluto-Distmem.

�

�2

�2#

����2#0

222210

11110

0000

direction of

pipeline p0

p1

p2

p3

Pluto-Distmem Arachne

19.70 56.04 57.99

(a) (b)

mapping

to procs

Pluto-Distmem

Arachne

(c)

Fig. 21. Deviation of computational time on PolyBench.

Pluto-Distmem faces two main issues that contribute to its load imbalance: (1)Pluto-Distmem uses the
polyhedral model to determine directions for pipeline parallelism and maps concurrently executable tiles to
processes at each time step. This mapping creates notable load discrepancies; for example, as shown in Figure 21(b),
Process 0 computes six more tiles than Process 3, as seen in the Floyd benchmark. (2)As discussed in Section
6.3, Pluto-Distmem does not account for the number of instances per dimension when mapping dimensions to
processes, further contributing to load imbalance in cases like Covcol and Dsyr2k, as shown in Figure 21(c).

6.6 Memory Usage with Data Distribution

In this section, we discuss another critical objective: reducing memory consumption to accommodate the memory
constraints of individual nodes. As noted in Section 4.4, if a computational partition only requires data from
adjacent partitions, memory usage can be minimized through index remapping. We tested memory usage on
ive PolyBench applications across 32 nodes and three NPB applications on 16 nodes, comparing memory
consumption against their original serial versions and parallelized versions generated by Pluto-Distmem or
oicial MPI versions without data distribution, results shown in Figure 20.
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Pluto-Distmem does not modify array deinitions and uses its own runtime, while declaring additional bufers
for data transfer. Our tests conirmed that in all ive Pluto-Distmem versions of PolyBench, each process required
more memory than in the original serial versions, with ADI consuming signiicantly more memory due to the
large volume of data transmitted by each process. When all arrays are distributed, each process in a 32-node
coniguration requires only 3.78% of the original data volume, even accounting for communication bufers. Even
if only some data is distributed, memory usage decreases with more processes, achieving over a 30% reduction in
applications like Covcol and Dsyr2k. For FT, SP and BT running on 16 nodes, memory usage per process was
reduced to just 6.55% and 17.09% of the serial versions, respectively.

7 Related Work

In the realm of distributed memory parallelization[20, 21, 32, 36], several attempts[8ś10, 24, 42, 43] have faced
signiicant limitations. Most eforts[20, 21, 32], including those leveraging perfectly nested loops with uniform
dependences, only address speciic aspects of parallelization and code generation, leaving comprehensive so-
lutions out of reach. Recent work[38] highlights challenges in distributed memory code generation for mixed
regular/irregular computations, while other methods[12, 35] optimize spatial data distribution in aine programs,
improving locality in distributed systems. The bipartite graph model[12] focuses on reducing data transfers to
minimize time, while a multi-objective optimization method[35] leverages aine transformations for improved
performance in distributed systems.
The polyhedral model[11, 26, 27, 31, 45, 46], designed for shared-memory, uses mathematical methods to

expose parallelism by transforming loop structures and optimizing locality. Recent adaptations of this model for
distributed memory[14, 44] demonstrate its potential in handling both task and data distribution across nodes, but
they often require signiicant manual intervention. Our approach is orthogonal to this model, applying polyhedral
techniques at the process level for thread parallelism and local data optimization while our system manages task
and data distribution. DISTAL[44], a tensor algebra compiler, abstracts data and computation distribution for
heterogeneous distributed systems but requires users to rewrite algorithms in a specialized language, posing
accessibility challenges.
Griebl’s work[25] provides insights into scheduling and allocation for distributed architectures but lacks in

generating eicient communication code, a challenge PLUTO-Distmem[14] addresses by mapping polyhedral
outputs onto distributed systems. However, its high communication costs and limited adoption hinder scalability,
which our work addresses using PLUTO-Distmem as a baseline.

R. Dathathri[19] focuses on data movement in heterogeneous architectures but does not address broader
parallel code generation. Recent eforts[13, 13, 28, 29, 33, 40, 41] aim to bridge the gap between thread-based
and distributed-memory paradigms. MPI-RICAL[40] assists domain decomposition in MPI using Transformer
models, focusing on suggesting MPI calls but not automating parallelization. Basumallik’s approach[13] simpliies
data synchronization across nodes but introduces communication overhead due to its oversimpliied strategy.
Saà-Garriga[39] maps the OpenMP shared memory model to MPI, enhancing multithreading but struggling with
complex computational patterns.

8 Conclusion

In this paper, we presented ARACHNE, a system designed to generate distributed parallel code with minimal
communication overhead. ARACHNE addresses critical challenges in computational partitioning, data distribution,
and communication handling. Through dynamic programming and user-friendly compiler directives, ARACHNE
enables eicient parallelization and reduces memory usage. Experimental results demonstrate that ARACHNE
outperforms PLUTO-Distmem, achieving lower communication overhead and supporting more parallel logic.
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