
FaaSMem: Improving Memory Efficiency of Serverless
Computing with Memory Pool Architecture

Chuhao Xu
Shanghai Jiao Tong University

Shanghai, China
barrin@sjtu.edu.cn

Yiyu Liu
Shanghai Jiao Tong University

Shanghai, China
liu_yiyu@sjtu.edu.cn

Zijun Li
Shanghai Jiao Tong University

Shanghai, China
lzjzx1122@sjtu.edu.cn

Quan Chen
Shanghai Jiao Tong University

Shanghai, China
chen-quan@cs.sjtu.edu.cn

Han Zhao
Shanghai Jiao Tong University

Shanghai, China
zhao-han@cs.sjtu.edu.cn

Deze Zeng
China University of Geosciences

Wuhan, China
deze@cug.edu.cn

Qian Peng
Huawei Cloud

Shenzhen, China
pengqian19@huawei.com

Xueqi Wu
Huawei Cloud

Shenzhen, China
wuxueqi4@huawei.com

Haifeng Zhao
Huawei Cloud

Shenzhen, China
zhaohaifeng4@huawei.com

Senbo Fu
Huawei Cloud

Shenzhen, China
fusenbo@huawei.com

Minyi Guo
Shanghai Jiao Tong University

Shanghai, China
guo-my@cs.sjtu.edu.cn

Abstract
In serverless computing, an idle container is not recycled
directly, in order to mitigate time-consuming cold container
startup. These idle containers still occupy the memory, ex-
asperating the memory shortage of today’s data centers. By
offloading their cold memory to remote memory pool could
potentially resolve this problem. However, existing offload-
ing policies either hurt the Quality of Service (QoS) or are
too coarse-grained in serverless computing scenarios.

We therefore propose FaaSMem, a dedicated memory of-
floading mechanism tailored for serverless computing with
memory poor architecture. It is proposed based on our find-
ing that the memory of a serverless container allocated in
different stages has different usage patterns. Specifically,
FaaSMem proposes Page Bucket (Pucket) to segregate the
memory pages in different segments, and applies segment-
wise offloading policies for them. FaaSMem also proposes a
semi-warm period during keep-alive stage, to seek a sweet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651355

spot between the offloading effort and the remote access
penalty. Experimental results show that FaaSMem reduces
the average local memory footprint by 9.9% - 79.8% and im-
proves the container deployment density to 108% - 218%,
with negligible 95%-ile latency increase.

CCS Concepts: • Software and its engineering → Cloud
computing;Memorymanagement; •Computer systems
organization→Cloud computing; •Hardware→ Emerg-
ing technologies; Memory and dense storage.

Keywords: FaaS, Serverless Computing, Memory Pool archi-
tecture, Memory Offloading

ACM Reference Format:
Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, Han Zhao, Deze Zeng,
Qian Peng, Xueqi Wu, Haifeng Zhao, Senbo Fu, and Minyi Guo.
2024. FaaSMem: Improving Memory Efficiency of Serverless Com-
puting with Memory Pool Architecture. In 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (ASPLOS ’24), April 27-May 1,
2024, La Jolla, CA, USA. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3620666.3651355

1 Introduction
Serverless computing [18, 31, 32, 43, 56, 60, 63], also known
as Function-as-a-Service (FaaS), has gained significant pop-
ularity in the cloud-native era. It decouples a monolithic
application into fine-grained functions, and uses lightweight
containers to execute requests when triggered [3, 41, 48].
Popular serverless platforms like AWS Lambda [11], Azure

https://orcid.org/0009-0003-8267-4614
https://orcid.org/0009-0000-6852-1978
https://orcid.org/0000-0003-4706-8451
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0002-1561-5329
https://orcid.org/0000-0003-3276-1202
https://orcid.org/0009-0000-0933-323X
https://orcid.org/0000-0002-1535-4253
https://orcid.org/0000-0001-5761-4941
https://orcid.org/0000-0001-8465-9088
https://orcid.org/0000-0003-0034-2302
https://doi.org/10.1145/3620666.3651355
https://doi.org/10.1145/3620666.3651355
https://doi.org/10.1145/3620666.3651355

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

Functions [12], and Google Cloud Functions [5] will man-
age the infrastructure, dynamically scaling-out containers
as workload changes for each function independently.
Serverless containers usually provide a keep-alive stage

upon the completion of function execution [25, 42, 57], wait-
ing for potential future requests, to avoid the time-consuming
cold-starts. By analyzing the Azure trace [69], we find the
keep-alive stage (or strategy) has resulted in a significant
amount of idle memory footprint for each container. Conse-
quently, thememory inefficiency of serverless computing has
emerged as one of the major concerns for cloud providers, as
the number of serverless containers within a node increases
into thousands [16, 41], exasperating the growing memory
shortage [29, 37, 40, 65] issue of today’s data center.
Many prior works [22, 26–28, 30, 47] have shown that

the emerging memory pool architecture has the potential
to address the memory inefficiency and shortage in data
centers. For instance, Pond [40] utilizes memory pooling to
reduce DRAM cost for the virtual machine scenarios, which
manages to harvest the stranded memory from the load-
unbalanced nodes. Given that serverless containers are idle
during keep-alive, they could be a good fit for the memory
pool architecture and benefit from the increased deployment
density. However, even though the memory pool enables
the compute nodes to offload some pages to the remote to
save local memory space, the offloaded part would suffer the
remote access latency penalty. Therefore, to avoid severe
performance degradation, only the infrequently accessed
pages, i.e., cold pages, are commonly appropriate candidates
for offloading [39, 65].

When employing existing memory offloading policies, we
find they are not plug-and-play solutions for serverless con-
tainers. Most importantly, these policies are agnostic to the
container stage, and perform sampling constantly during the
keep-alive stage. In this case, hot pages required for subse-
quent requests are still considered cold and then offloaded,
resulting in subsequent requests suffering the remote access
latency penalty. It motivates us that in order to efficiently
and safely offload memory in serverless architecture, we
should explore the memory layout of serverless containers
to seek opportunities for memory offloading.

Drawing inspiration from different stages during the con-
tainer’s lifetime, we propose a segment-basedmemory layout
for serverless containers, namely the runtime, init, and exe-
cution segments. In the runtime segment, we find numerous
memory pages have been allocated during runtime loading,
but hardly accessed again during function execution. These
cold pages can be offloaded efficiently and safely with neg-
ligible performance degradation. In the init segment, many
containers handle few requests across lifetime, leading to a
high risk of misjudgement of cold pages. Meanwhile, numer-
ous hot pages still persist during keep-alive, overwhelming
scarce memory resources. In the last execution segment,
memory allocations during function execution often exhibit

short-lived pattern, as they will be freed immediately once
the execution completes. Considering the relatively short ex-
ecution time, the benefit of memory offloading in execution
segment is marginal.
To seize the opportunities to embrace the memory pool

architecture in serverless, we encounter three primary chal-
lenges. First of all, the memory pages allocated during differ-
ent container stages have been managed in a unified manner
by the current kernel memory subsystem [8]. A method is
required to segregate different pages towards different seg-
ments. Secondly, as each segment exhibits unique memory
characteristics with different access patterns, the offloading
polices should be carefully tailored for different segments,
avoiding severe performance degradation. Thirdly, numer-
ous hot pages reside during keep-alive stage, while the con-
ventional wisdom is that these hot pages are not suitable
for offloading. Therefore, the keep-alive strategy under the
memory pool architecture deserves reconsideration.
Therefore, we propose FaaSMem, a dedicated memory

pooling mechanism for serverless architecture. FaaSMem
introduces the Page Bucket (Pucket) to segregate pages from
different segments into different buckets of a serverless con-
tainer and applies a series of segment-wise offloading policies
towards them. For the Runtime Pucket, FaaSMem offloads
the cold pages upon the first request completes. For the Ini-
tialization Pucket, FaaSMem lazy-offloads the cold pages by
a request-window, which is determined by a real-time profil-
ing. Further, to deal with numerous hot pages in Runtime and
Init Puckets during container keep-alive, a shared hot page
pool in also introduced to manage them. FaaSMem gradually
offloads the hot pages in this pool, making the container
semi-warm. It guarantees the tail latency by selecting an
appropriate semi-warm start timing based on real-time pro-
filing. Semi-warm helps FaaSMem seek a sweet spot between
the offloading effort and the remote access penalty.
To the best of our knowledge, FaaSMem is the first work

that exploits the memory pool architecture for serverless
computing. The main contributions are as follows.

• Comprehensive analysis of serverless memory
layout. The proposed segment-based memory layout
reveals opportunities of memory offloading, and moti-
vates the Pucket design in FaaSMem.

• The segment-wise cold page offloading policies
for different Puckets. FaaSMem introduces Pucket to
segregate memory pages among three segments, and
applies segment-wise offloading policies correspond-
ing to unique memory patterns.

• The proposal of semi-warm period for serverless
containers under memory pool architecture.We
reframe the keep-alive stage under the memory pool
architecture with semi-warm period, and provide the
methodology to adopt the semi-warm.

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

10s 100s 1000s
Keep-alive Timeout

40%

60%

80%

100%
M

em
or

y
In

ac
tiv

e
Ti

m
e

89.2%

Inactive Time

0%

5%

10%

15%

Co
ld

-s
ta

rt
Ra

tio

Cold-start

1min 10min

Figure 1. The containers memory inactive time and the
requests cold-start ratio when keep-alive timeout varies.

We evaluate FaaSMem using real-world applications and
Azure traces. Experimental results show that compared to
serverless systems without memory pool architecture, FaaS-
Mem reduces the average local memory footprint by 9.9%
- 79.8% and improves the container deployment density to
108% - 218%, with negligible 95%-ile end-to-end latency in-
crease. FaaSMem’s source code is publicly available at https:
//github.com/BarrinXu/FaaSMem.

2 Background and Motivation
In this section, we analyze the memory inefficiency problem
in serverless computing, and problems of leveraging memory
pool to resolve the inefficiency.

2.1 The Memory Inefficiency Problem
To alleviate frequent cold startups [19, 41–43, 50, 57], server-
less platforms usually implement a keep-alive strategy to
delay the timing of container recycling. This approach pre-
serves the container in a warm state for a certain duration
after the function container processes any request.

However, the keep-alive strategy results in severe memory
inefficiency. We conduct a simulation based on the Azure
Functions Invocation Trace 2021 [69] that involves 424 func-
tions with 1,980,951 invocations. By setting the keep-alive
threshold, we can count the incidence of cold-start, the total
container keep-alive time, and the total container lifetime.
Figure 1 illustrates themetrics of “memory inactive time” and
“cold-start ratio” under varying keep-alive timeouts in the
trace. Higher inactive time suggests that the system expends
more time retaining container memory.
As observed, a superior user experience, denoted by a

lower cold-start ratio, leads to a larger number of inactive
memory pages occupying host space. When cloud providers
commonly set the maximal keep-alive timeout at around 10
minutes, container memory remains inactive for 89.2% of
its lifetime. Furthermore, even with a 1-minute keep-alive
timeout, memory stays inactive for 70.1% of its lifetime, in-
dicating inefficient memory utilization.
The memory inactive time is high because a keep-alive

container retains memory resources even when it is free.
Meanwhile, there is a growing demand for memory capacity
in today’s data centers, leading to severememory shortage[29,

bert
graph web float

matmul
linpack

image
chame.

pyaes gzip json0

1

P9
5

La
te

nc
y

(s
)

No Offload
DAMON

Figure 2. Response latency when offload via DAMON.

37, 40, 65]. In this case, memory becomes a bottleneck re-
source that limits container deployment density in serverless.

2.2 Inefficiency of Leveraging Memory Pool
In the face of growing memory demand, simply upgrading
memory for compute nodes would have to replace the old
ones, resulting in additional waste [15]. Therefore, a feasible
approach to improve the memory efficiency is leveraging
the emerging memory pool design in data centers [27, 28, 30,
37, 38, 46, 58, 62, 65], which allows for the reuse of older or
retired memory with enhanced cost-efficiency.

To this end, a data center could have some memory nodes,
and these memory nodes are accessible through high band-
width connection (e.g., InfiniBand and CXL). In this way,
compute nodes are able to offload some cold pages to the
memory pool to save local memory space. Such design has
been proved to be efficient in many application scenarios [15,
17, 40].

There are generally two types of policies for managing
the memory offloading: feedback-based [37, 65] and sample-
based [7, 39, 47, 51]. With feedback-based policy, such as
TMO [65], the memory is often slowly offloaded to avoid
severe performance degradation, and the offloading immedi-
ately stops once the performance drop reaches a pre-defined
threshold. With sampling-based policy, such as DAMON [7,
51], the access hotness of all the memory pages are moni-
tored, and all the cold pages are offloaded immediately.

TMO tries to offload only 0.05% of the total memory every
6 seconds, and the offloading ratio of a 10-minute period
is within 3.0%. This is impractical for short-lived serverless
containers, while most of them only lives for tens of minutes
due to temporary load and keep-alive timeout. Our detailed
experiments in Section 8 also show the poor performance of
TMO in serverless computing scenario.

We also show the performance of DAMON in handling
memory offloading in serverless computing scenario. In this
experiment, we use all 11 benchmarks from evaluation sec-
tion with invocation traces that are randomly selected from
the Azure Functions trace [69]. Figure 2 shows the 95%-ile
latency of the benchmarks when DAMON is used to offload
cold pages. As observed, the response latency of the bench-
marks increase by up to 14X, when the memory is offloaded
by DAMON. This is mainly because DAMON performs sam-
pling constantly during the keep-alive stage, and a large

https://github.com/BarrinXu/FaaSMem
https://github.com/BarrinXu/FaaSMem

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

M
em

or
y

U
sa

ge

Keep-alive

Runtime Segment Exec Segment

Keep-aliveReq1 Req2InitLaunch

Init Segment

t

Figure 3. The memory layout of a serverless container.

number of hot pages required for subsequent requests are
all considered cold. As a result, memory offloading is heavily
influenced by these sampling misidentification, leading to
fatal decisions.

Existing solutions are not suitable in serverless computing
scenario, because they are agnostic to the changes of memory
access patterns in different container stages.We therefore dig
into the memory usage pattern of a serverless container, in
order to explore the appropriate memory offloading without
hurting user experience.

3 Exploring FaaS Memory Usage
Inspired by the stages during the container’s lifetime, we ana-
lyze thememory usage behaviors according to the stages, and
identify different characteristics in different stages. Specifi-
cally, Figure 3 illustrates three segments we identified based
on different stages of a serverless container.
Specifically, in the beginning of a container’s lifetime, it

experiences a cold-start container launching, where themem-
ory footprint depends on the container runtime provided by
FaaS platforms, mostly not associated with user-uploaded
function code. This runtime-related memory is identified
as the runtime segment (Segment-1). Subsequently, the con-
tainer proceeds to the initialization of the function code,
loading user-defined packages and libraries into memory
(Segment-2). The memory of the runtime segment and init
segment constitutes the base memory footprint of the con-
tainer. Following container launch and initialization, the
container is prepared to handle requests. Additional memory
beyond the base footprint is allocated for the function’s tem-
porary variables and states during each execution (Segment-
3), which is subsequently reclaimed upon completion.
Based on the proposed memory layout, we dig into the

memory characteristics of each segment to discuss the op-
portunities of memory offloading respectively.

3.1 Segment-1: Memory of Container Runtime
A container for a serverless function contains not only the
function code itself, but also the runtime environment on
which it depends. As the statistics of Azure Functions [57]
show that 99.9% of applications’ containers take up higher
than 76 MB of memory, the practical explanation is that the
runtime segment takes a large amount of memory footprint.

We collect the memory footprint on real serverless sys-
tems by executing a hello-world function. In this experiment,
the containers are all created from the official-build images
of Apache OpenWhisk [2] and Azure Functions [12]. We
identify the inactive memory pages after a hello-world func-
tion execution based on whether the Access bit of a page is
changed. Figure 4 shows the inactive memory of the hello-
world container. Since a hello-world function itself takes up
little memory, the result can be recognized as the memory
usage of container runtime.
As shown in Figure 4, the inactive runtime memory of a

container alone takes up considerable amounts and is corre-
lated with the type of programming languages. For Azure,
all three take up more than 100 MB of memory, while for
OpenWhisk, the Python and Java based runtimes also take
up 24 MB and 57 MB, respectively. Using Java as runtime
has the largest amount of inactive memory due to Java JVM.
Takeaway. The inactive memory of runtime segment

significantly reduces the memory efficiency. A large number
of cold memory pages that are allocated during runtime
loading but hardly ever accessed later.

3.2 Segment-2: Memory of Function Initialization
After loading the runtime environment, the container pro-
ceeds to the function initialization stage. This stage is user-
defined, leading to diverse memory footprints for different
functions. Generally, this segment is designed to fulfill the
requirements of subsequent requests, including dependent
packages, global variables, datasets, and caches.

Cold memory pages that are suitable for offloading, can be
identified by analyzing the memory access patterns of histor-
ical traces. However, this method encounters challenges with
serverless functions that experience infrequent invocations.
Figure 5, derived from Azure Trace simulations, illustrates
the distribution of the number of requests handled by each
container. Nearly 60% of containers invoke at most two re-
quests throughout their lifetime. In this case, we cannot
collect adequate data to infer the memory access pattern.
Meanwhile, an increasing number of real-world applica-

tions, such asML inference [68], web services [32], and graph
processing [1], have been migrated to the serverless architec-
ture. These applications often exhibit a substantial number
of hot pages in the initialization segment, accessed during
each request. Figure 6 illustrates the memory footprint of a
ML inference (BERT) function over time. The first 5 seconds
is the initialization stage, during which enormous memory
is allocated and accessed (from 0 to 1000 MB). Some of the
memory is released afterwards. During the execution stage,
about 610 MB of memory is accessed. The strips after 8s in
the figure illustrate the memory access pattern, showing that
a significant amount (about 400 MB) of hot pages generated
during initialization is accessed in each request.

Takeaway. The limited number of requests per-container
handles makes the cold-page identification in initialization

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Node.js Python Java
Container Runtime

0

50

100

150

In
ac

tiv
e

Ru
nt

im
e

M
em

or
y

(M
B) OpenWhisk Azure

Figure 4. The inactive memory
of the runtime segment.

1 2 101 102 103

Number of Requests
Per Container Handles

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Figure 5. CDF of the number of
requests per container handles.

0 5 10 15 20 25
Timeline (s)

400

800

1200

Ad
dr

es
s (

M
B)

0

2

4

6

Ac
ce

ss
 C

ou
nt

Figure 6. The Access bit scans of memory pages
of ML inference benchmark BERT.

segment arduous. Besides, numerous hot pages persist dur-
ing keep-alive, significantly reducing the memory efficiency.

3.3 Segment-3: Memory of Function Execution
Memory in this segment consists of temporary variables
and states during function execution. Since each invocation
request usually relies on the outside inputs, the memory
footprint of this segment varies as requests change.
We select FunctionBench [34] and conduct an empirical

study. We run these functions in independent processes, and
then check the memory usage of each process via Linux Con-
trol Group (Cgroup) to trace the memory footprint during
function execution. We find this segment only exists during
the execution stage. Any temporary variables allocated are
freed as soon as the execution completes, i.e., these pages do
not reside during the keep-alive stage.

Takeaway. Memory pages allocated at the execution seg-
ment are immediately released after each execution com-
pletes. Given that function execution in serverless scenario
typically takes only a few hundred milliseconds [57, 69], the
benefit of page offloading in this segment is marginal.

3.4 Implications and Challenges
The study of the three segments implies that there exist
memory offloading opportunities. To exploit our proposed
segment-based memory layout to offload memory in server-
less, we encounters three primary challenges.

Challenge-1: Reorganizing the memory structure of
serverless containers. To efficiently exploit the memory
pool architecture, we should take the segment-basedmemory
structure characteristics of FaaS into consideration. Never-
theless, the current memory subsystem is not expected to
identify the different pages attributed to the corresponding
segment, and the pages generated across different segments
are also not discriminated in the operating system.
Challenge-2: Tailoring cold page offloading mech-

anisms for different segments. In accordance with the
aforementioned page identification and segregation, differ-
ent mechanisms for identifying cold and hot pages, along
with corresponding policies for offloading cold pages, need
to be tailored for each segment. Crucially, these mechanisms

and policies should be carefully designed to minimize the
penalties linked with the revisiting of remote memory pages.
Challenge-3: A methodology of hot pages manage-

ment during keep-alive to reduce memory footprint.
After offloading cold pages, a high proportion of hot ones
are still residing during the long-lasting keep-alive and wait-
ing for future requests, leading to a significant reduction in
local memory efficiency. Under memory pool architecture,
the keep-alive strategy for serverless computing should be
redesigned, and the hot pages could also be offloaded to the
remote memory.

4 Overview of FaaSMem Mechanism
Given the unique offloading preferences for the memory in
different segments, it is imperative to identify the cold mem-
ory pages in different segments and apply distinct offloading
policies for each. However, the kernel memory subsystem
treats the entire container as a single Cgroup, where many
pages in different segments share the same virtual address
space and are being managed in a unified manner. Since
current sample-based cold-page identification methods are
actually recording the virtual memory addresses, we cannot
trace-back from these pages to correspond segments.
FaaSMem introduces the Pucket to segregate memory

pages in different segments, with each Pucket being parti-
tioned by the Time Barrier. Figure 7(a) shows the design of
Pucket. There is an inactive page list maintained in each
Pucket, and a shared hot page pool among different Puckets.

Under serverless paradigm, FaaSMem creates three Puck-
ets to segregate memory pages into three different segments.
Figure 7(b) shows the organization of Puckets in serverless.
Specifically, upon the successful loading of the container
runtime, FaaSMem inserts a Runtime-Init time barrier into
the LRU page list of its Cgroup. Pages generated before this
Runtime-Init time barrier are segregated and assigned to the
Runtime Pucket. Similarly, after the initialization of a func-
tion container, an Init-Execution time barrier is introduced,
which produces Init Pucket and Execution Pucket.

All pages generated within a Pucket are initially included
in its inactive list. As explained in the memory layout, the of-
fload benefit of the execution segment is marginal. Therefore,

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

Hot Page Pool

Pucket

Inactive
page list

recall barrier

(a) Pucket design.

Init
Pucket

Hot Page Pool

recall

Exec
Pucket Remote

memory

Reactive

Window-based

Semi-warm

recall

Offloading policy

roll-back

Runtime
Pucket

recallroll-back

(b) Segment-based Pucket in FaaSMem and tailored offloading policies for different Puckets.

Figure 7. Overview of FaaSMem. FaaSMem uses time barrier to segregate pages into different Puckets. It reactively offloads the
Runtime Pucket, applies window-based policy to offload Init Pucket, and proposes the semi-warm period to manage hot pages.

FaaSMem does not monitor the page access of the Execu-
tion Pucket. To identify cold pages for Runtime Pucket and
Init Pucket, when a page is revisited, it is moved to the hot
page pool. As illustrated in Figure 7(a), when purple-colored
pages initially assigned to the Pucket are revisited, they are
removed from the inactive page list and added to the hot
page pool.
The remaining inactive pages within these Puckets are

considered as candidates for cold pages that can be safely
offloaded. A reactive offloading policy is employed for the
Runtime Pucket, and a request window-based offloading pol-
icy is applied to the Init Pucket. FaaSMem fetches the remote
pages once accessed, and periodically re-evaluates the ac-
tivity of pages in the hot page pool through page rollback.
Moreover, to manage numerous hot pages during keep-alive,
FaaSMem introduces a semi-warm period to gradually of-
fload them while ensuring the 95%-ile latency. Subsequent
sections discuss these customized policies, addressing when
to offload inactive pages of different Puckets and how to
handle recalled pages in the hot page pool.

5 Offloading Cold Pages for Puckets
The inactive cold pages of the Puckets and the hot page
pool change as time goes by, while pages are moved among
them. FaaSMem proposes a segment-wise offloading policies
towards different memory Puckets.

5.1 Reactive Offload for Runtime Pucket
The runtime part of a container interacts with the controller
and provides the environment for functions. Therefore, the
memory of the runtime segment is independent of the func-
tion code executed. It motivates us that if a page created at
the Runtime Pucket is not accessed during the init stage and
the first request execution, it will hardly be accessed during
later request execution.

Experiment in Figure 8 verifies that few pages are recalled
during subsequent requests after the first execution. In the ex-
periment, we use the runtime of OpenWhisk, which consists
a Flask-based action proxy, and we select all 11 benchmarks
from the evaluation section. After the offloading of the Run-
time Pucket once the first request completes, we find that

0 1 2 3
Recall Pages

bert
graph

web
float

matmul
linpack
image

chame.
pyaes

gzip
json

Figure 8. Recalls
of Runtime Pucket.

0 5 10 15 20 25
Timeline (s)

50

100

150

200

Ad
dr

es
s (

M
B)

0

5

10

15

Ac
ce

ss
 C

ou
nt

Figure 9. The Access bit scans of mem-
ory pages of benchmark web.

the subsequent requests hardly results in the page recalling
from the Runtime Pucket.

Therefore, when the container completes the first request,
pages left in the inactive list of the Runtime Pucket can be
offloaded to remote memory. Once the the first request of a
launching container is completed, an message is generated
and passed to the serverless controller. FaaSMem will then
offload all inactive pages of the Runtime Pucket.

5.2 Window-based Offload for Init Pucket
For pages created in the Init Pucket, we can still keep track
of pages that remain unaccessed by subsequent requests,
during which any access to init segment’s page will move
it to the hot page pool. However, aggressive offloading for
these inactive cold pages like Runtime Pucket does is of high
risk because we cannot confidently guarantee that a page
unaccessed by one request will not be accessed by further
ones. This means that the serverless system should lazy-
offload inactive pages of the Init Pucket until more requests
have been executed.
Given that the preference for offloading the Init Pucket

depends on the characteristics of the function, determining
an adaptive request-window for different functions while re-
liably identifying cold pages is another non-trivial issue. For
example, in ML model inference of Figure 6, the number of
pages accessed per request tends to stable, so it is sufficient

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

offloaded

after a
request-
window

offloadedoffloaded offloaded

to
runtime
Pucket

Init Pucket

Hot Page Pool

roll back offload
roll

back

roll-back recall

Figure 10. Periodic pages rollback of Pucket.

to offload the Init Pucket after one request-window. Con-
versely, web services may involve different cached HTML
pages accessed by each request. Figure 9 shows the access
scans of web, while each vertical column represents a request.
Within a request, there consists of multiple bars, represent-
ing different cached HTML pages. Therefore, it is necessary
to offer a more prudent choice of a larger request-window,
such as 20.
To determine the appropriate request window size, FaaS-

Mem monitors the descent gradient of remaining pages
within the Init Pucket relative to the number of executed
requests. As more function requests have been completed,
the number of pages in the Init Pucket decreases. When the
descent gradient tends to zero, which indicates the num-
ber of pages in the Init Pucket will probably not change
dramatically, FaaSMem identifies this corresponding point
as the final request-window size [36, 45, 49]. At this stage,
FaaSMem systematically offloads all pages in the Init Pucket.
Employing this approach enables FaaSMem to lazy-offload
the Init Pucket after a carefully determined request-window.

5.3 Periodic Page Rolling Back to Puckets
As one container executes more requests, pages of the Run-
time Pucket and the Init Pucket that were previously of-
floaded may be gradually and slowly recalled to the hot page
pool. FaaSMem needs to periodically re-evaluate the active-
ness of the pages in the hot page pool.
Figure 10 illustrates the re-evaluation procedure. FaaS-

Mem utilizes insights gained from profiling the request-
window through the Init Pucket. Following the execution of
a request-window of the same size, FaaSMem rolls back all
pages in the hot page pool to their respective original Puck-
ets. Subsequently, FaaSMem awaits another request-window,
during which any access to a page in the inactive list prompts
its return to the hot page pool. Pages that remain in the in-
active lists of the Runtime Pucket and the Init Pucket after
this request-window are then offloaded. Following this, FaaS-
Mem initiates a new cycle of rollback. To prevent frequent
rollbacks, FaaSMem introduces a time parameter, denoted as
t, requiring an interval of more than t from the last rollback
before another can be performed. The rollback is triggered by
the system only when the time-window and request-window
are both satisfied. The evaluation section will discuss how to

Container
Trace

Gradual Semi-warm offload

Exec Keep-alive

Semi-
warm

Lo
ca

l M
em

or
y

tX1

Apply
Semi-
warm

(X1,0.99)

Set Semi-warm timing

Figure 11.Overview of the semi-warm design, including the
determination of semi-warm timing and the gradual memory
offloading process upon a container entering the semi-warm.

select an appropriate t to control the overhead of rollbacks
within a manageable range.

In summary, FaaSMem adopts a reactive offloading ap-
proach for the Runtime Pucket upon completion of the first
request. The determination of the request-window size for
delaying the offload of the Init Pucket is made through real-
time monitoring. Subsequently, FaaSMem continually re-
evaluates the hot page pool and offloads inactive pages.

6 Offloading Hot Pages with Semi-warm
The segment-wise memory offloading policies for Puckets
effectively identify and offload cold pages to the remote
memory pool. However, large-scale real-world applications,
such as web services and model inference, have numerous
hot pages during container keep-alive. This motivates us
to design an exclusive offload policy tailored for hot pages
during container keep-alive.

6.1 The Semi-warm Period
As for the hot memory pages, the offloading behavior is
no longer non-destructive, and the pages to-be-offloaded
are exactly the ones to be accessed by subsequent requests.
However, as discussed in Section 2.1, under the serverless
context, the memory will be idle for a long time while taking
up enormous resources, let alone the fact that the container
might not be used after a request. Therefore, although it
is evident that further offloading hot memory pages leads
to a significant increase in response latency for the next
request, we still needs to do this. The previous current page
offloading policy only focus on the historical page access
pattern, without the consideration of near-future request
coming.

FaaSMem introduces a new period for keep-alive contain-
ers under memory pool architecture, the semi-warm period.
It is designed to ensure that offloading hot pages has mini-
mal impact on future requests. Figure 11 shows the overview
of semi-warm. FaaSMem sets the semi-warm start timing
based on the invocation characteristics of each function. It
gathers the historical invocation trace of each function, and
then analyzes the distribution of container reused intervals.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

Here, the container reused intervals is a collection of how
long each container stays keep-alive until receiving the next
request. Based on it, FaaSMem generates a CDF depicting the
frequency of container reused intervals. For example, the left
part shows the corresponding CDF graph of one anonymous
function of Azure Trace.

To guarantee the 95%-ile of end-to-end latency, FaaSMem
uses pessimistic estimation that adopt the 99%-ile of con-
tainer reused interval distribution as the semi-warm start
timing. During semi-warm period, hot pages are further of-
floaded to the remote pool. In this way, serverless containers
keep all hot pages for 95% of the requests. The rest 5% will
experience a semi-warm start with hot page recalling.

6.2 Gradual Offloading and Bandwidth Control
FaaSMem adopts a gradual memory offload policy for semi-
warm containers with bandwidth control. Specifically, FaaS-
Mem would not tend to offload all memory immediately
when entering the semi-warm period, but perform a grad-
ual offloading as time goes by. Once a new request arrives,
the offloading procedure will stop. The right part of Fig-
ure 11 shows the local memory changes during semi-warm.
A gradual offloading approach is particularly effective for
fluctuating request invocation patterns.
If a compute node generates numerous containers in re-

sponse to a sudden surge, these containers will become semi-
warm simultaneously. However, offloading simultaneously
with a significant amount of memory could result in band-
width contention. The gradual approach can also help dis-
tribute the offloading pressure evenly over time.
Specifically, FaaSMem provides two approaches to grad-

ually offload memory during semi-warm: percentile-based
(e.g., 1%/s) and amount-based (e.g., 1MB/s). Cloud providers
can profile each function and then select an appropriate of-
floading approach. For example, large functions adopt the
percentile-based approach to complete the offloading, while
small functions follow the amount-based approach to offload
memory faster. Besides, FaaSMem also monitors the global
remote bandwidth in real-time, and uniformly reduces the of-
fload speed of all containers when the bandwidth approaches
the limit under extreme cases.

7 Implementation of FaaSMem
We leverage the Multi-gen LRU (MGLRU)1 [9] feature in the
Linux kernel to implement FaaSMem. MGLRU tracks pages
in each LRU generation, and move them from older to newer
generations when they are accessed [10]. We then imple-
ment a Pucket as a generation of the MGLRU. Meanwhile,
MGLRU offers a system interface to allow for creating new
generations, and inserting a time barrier or rolling back hot
pages corresponds to creating a new generation.

1The MGLRU feature has been integrated into the kernel since Linux 6.1.

To support transparent memory pooling, we have ported
Fastswap2 [15], which modifies the page-out and page-in
data paths of the Linux kernel swap mechanism to support
remote memory offloading and retrieval. When offloading
a page, the kernel swaps the page to the remote memory
through Fastswap’s RDMA interface; when accessing a re-
mote page, a pagefault is triggered, invoking Fastswap to
fetch the remote page.

8 Experimental Evaluation
In this section, we first evaluate FaaSMem in reducing local
memory footprint under real-world traces. Then, we break
down the effectiveness of the mechanisms in FaaSMem, and
analyze the applicability and the overhead. Last, we study the
production deployment density improvement by FaaSMem.

8.1 Experimental Setup
Hardware and Software Setup. We evaluate FaaSMem on
a 2-node cluster of the CloudLab [23]. We use one node as
the compute node, and the other node as the memory pool.
Each node has 16 cores, 64 GB memory, and is equipped
with a Mellanox FDR CX3 card. The nodes are connected
through a Mellanox SX6036G switch that offers 56 Gbps
Infiniband network. FaaSMem runs on Ubuntu 22.04 with a
modified Linux 6.1 kernel. The container runtime is based
on OpenWhisk [2], and is set with a 10-minute keep-alive
timeout.
Benchmarks. We use 11 benchmarks in total, including

eight micro-benchmarks from FunctionBench3 [34]: float,
matmul, linpack, image, chameleon, pyaes, gzip, and json. Be-
sides, we select three real-world applications: BERT-based ML
Inference (Bert) [20], Graph Breadth-first Search (Graph) [1],
and HTML Web Service (Web) [4].
For eight micro-benchmarks, we assign the popular 0.1-

core settings [13]. To fulfill the user-facing latency require-
ments of the real-world applications (around 200 ms), we
assign 1-core, 0.5-core, 0.2-core for Bert, Graph, and Web,
respectively.

Invocation Patterns. We initiate all invocation requests
on the compute node to avoid the latency effects between
the client and the server. For the micro-benchmarks, we
follow the pre-defined patterns from FunctionBench. For
Bert, the input text is a random sentence from a long novel,
which makes it more challenging as different requests may
access different nodes in the neural network. For Graph and
Web, the user’s request includes a specific number 𝑖𝑑𝑥 to
specify the start node for Graph or the specific HTML page
for Web. The 𝑖𝑑𝑥 obeys the Pareto distribution, which can
better represent the real-world scenario.
2Fastswap was originally developed on Linux 4.11, and we have ported it to
Linux 6.1 to make it compatible with the MGLRU.
3We have replaced the model-related benchmarks of FunctionBench with
BERT to better represent the real-world scenario. Meanwhile, a few bench-
marks are omitted due to workflow requirements or runtime conflicts.

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0.0

0.5

1.0
No

rm
. A

vg
.

Lo
ca

l M
em

or
y -8.6% -12.6% -7.9% -12.5%

-1.4%
-16.5%

-2.1% -14.0%
-3.0% -7.2% -5.4%

-47.5%
-27.1%

-70.1% -71.0%
-63.7% -67.9%

-54.2% -59.4% -69.3%
-60.8% -61.9%

Baseline TMO FaaSMem

bert graph web float matmul linpack image chameleon pyaes gzip json0

1

No
rm

. P
95

La
te

nc
y +10%

Baseline TMO FaaSMem

(a) High load

0.0

0.5

1.0

No
rm

. A
vg

.
Lo

ca
l M

em
or

y

-20.2%
-8.9% -12.9% -18.0%

-9.9% -12.4%
-2.5% -13.0%

-7.5% -5.7% -3.8%

-38.5%

-9.9%

-61.1% -72.0% -68.4% -66.7%
-60.4% -56.3% -68.9%

-60.8% -66.8%Baseline TMO FaaSMem

bert graph web float matmul linpack image chameleon pyaes gzip json0

1

No
rm

. P
95

La
te

nc
y +10%

Baseline TMO FaaSMem

(b) Low load

Figure 12. The response latency and memory usage of the benchmarks under the high-load trace and the low-load trace.

Baselines.We treat one of the variants of FaaSMem with-
out memory offloading as the baseline. In addition, we also
compare FaaSMem against TMO [65], which is a state-of-the-
art memory offloading system. As discussed in section 2.2,
we do not consider DAMON [7] since it incurs severe per-
formance degradation.

8.2 Azure Trace Evaluation
We use the Azure Functions Trace 2021 [69] to demonstrate
the memory savings and the corresponding performance im-
pact of FaaSMem. We divide the anonymous function traces
into two types, the high-load and the low-load, according
to their average daily invocations. As each trace includes a
detailed firing timestamp of each invocation, we map them
to our benchmarks, and compare FaaSMem’s performance
towards the baseline and TMO among different traces.

8.2.1 Performance of Diverse Benchmarks. To inves-
tigate the performance of FaaSMem under diverse bench-
marks, we randomly choose a high-load trace and a low-load
trace of a 1-hour-period.
Figure 12 shows the normalized average local memory

usage and the 95%-ile latency of all benchmarks with the
high-load and the low-load trace. Overall, FaaSMem reduces
a significant amount of local memory footprint while keep-
ing the same level of function performance. It reduces the
local memory usage by 27.1% to 71.0% under high load, and
by 9.9% to 72.0% under low load. Compared with TMO, FaaS-
Mem’s offloading effort is up to 45.5X higher, while the tail la-
tency maintains the same level. This is because TMO offloads
memory in a conservative step-by-step manner, whereas

FaaSMem quickly identifies cold pages based on Pucket and
makes containers semi-warm during keep-alive.
For eight micro-benchmarks, FaaSMem offloads at least

50% of memory, since they all have very little memory in
the init segment and the cold pages in the runtime segment
take up a significant portion of their total memory footprint,
which can be offloaded by Pucket efficiently. Conversely,
for three applications, their init segment has much more
memory than the runtime segment. And the page access
pattern in this segment also varies from these benchmarks.
Benchmark Web gains the highest offloading ratio, as the
pages accessed obeys the Pareto distribution, while Graph
exhibits poor offloading ratio, because each request performs
a complete traversal of the entire graph.
Meanwhile, under the high-load trace, FaaSMem usually

offloads more memory for three applications, compared to
the low-load trace. This is because the invocation pattern of
high-load trace often exhibits a sudden increase and decrease,
and it is likely to havemore keep-alive containers stranded in
memory due to burst, where FaaSMem’s semi-warm period
is tailored precisely for this situation. As for TMO, it reacts
slowly to these temporary bursty containers. Take Bert in
Figure 12a as an example, during each request, there are
average 1.08 MB data offloaded from local and 0.65 MB data
recalled from remote in FaaSMem. The corresponding results
for TMO are only 0.05 MB and 0.0004 MB. This also indicates
that FaaSMem performs better when the load is higher and
is more helpful for situations when nodes are strapped for
memory resources due to high load.

8.2.2 Performance of Diverse Workloads. To investi-
gate whether FaaSMem is applicable to various workloads,

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

Table 1. 95%-ile response latency and average memory usage of applications under diverse traces (“Lat.” stands for latency).

(a) Bert

Baseline TMO FaaSMem
ID Lat. Mem Lat. Mem Lat. Mem
1 0.14s 2.64G 0.16s 2.56G 0.15s 1.62G
2 0.14s 1.55G 0.16s 1.51G 0.15s 0.92G
3 0.14s 2.09G 0.15s 1.90G 0.15s 1.43G
4 0.14s 2.04G 0.17s 1.96G 0.15s 1.43G
5 9.24s 8.81G 10.4s 8.58G 10.1s 5.60G
6 0.13s 1.30G 0.16s 1.26G 0.15s 0.81G

(b) Graph

Baseline TMO FaaSMem
Lat. Mem Lat. Mem Lat. Mem
0.26s 0.77G 0.27s 0.73G 0.27s 0.59G
0.25s 0.44G 0.25s 0.41G 0.25s 0.33G
0.25s 0.58G 0.25s 0.55G 0.26s 0.38G
0.24s 0.67G 0.26s 0.62G 0.25s 0.58G
9.95s 2.70G 10.8s 2.47G 10.6s 2.31G
0.23s 0.35G 0.25s 0.33G 0.25s 0.28G

(c)Web

Baseline TMO FaaSMem
Lat. Mem Lat. Mem Lat. Mem
0.16s 0.83G 0.17s 0.75G 0.17s 0.19G
0.14s 0.57G 0.15s 0.56G 0.15s 0.13G
0.12s 0.71G 0.14s 0.69G 0.13s 0.15G
0.12s 0.81G 0.12s 0.73G 0.13s 0.38G
0.45s 3.62G 0.49s 3.25G 0.46s 1.16G
0.12s 0.48G 0.12s 0.42G 0.12s 0.10G

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Memory Offload Ratio

we select six high-load traces and apply them to each of the
applications. Table 1 shows the result with diverse traces.
In the table, FaaSMem’s corresponding color blocks are

typically much darker than TMO, indicating that more mem-
ory is offloaded. FaaSMem works best for Web because its
init segment has remarkable cold pages, allowing for efficient
offloading via Pucket, as previously discussed in Section 8.2.1.
Among these traces, there are some anomalies. For ID-5,

the tail latency of three applications severely increases in
baseline, especially for Bert and Graph. This is because ID-5
exhibits an extreme short-term surge, resulting in a large
number of congested requests suffering from cold startup.
However, even in this case, FaaSMem is still able to reduce
memory usage by 14.4% to 68.0% and keep the tail-latency
degradation consistent with the baseline.

FaaSMem is effective while maintaining the same level of
performance under diverse traces.

8.3 Ablation Experiments
In this subsection, we conduct experiments to demonstrate
the effectiveness of each component in FaaSMem. Figure 13
shows the results when disabling each component of FaaS-
Mem of benchmark Bert under two high-load traces.

8.3.1 Common Case. We first focus on the common case
trace of Figure 13a to study the effect of each component by
tracing the memory footprint timeline.

The effectiveness of Pucket. Without Pucket, the mem-
ory footprint is significantly higher than that with Pucket.
This is because all pages won’t be offloaded until semi-warm.
For containers that never enter the semi-warm period, their
cold pages reside in local, while Pucket can efficiently offload
them at an early stage, resulting in higher memory usage.
Specifically, the average memory usage of FaaSMem de-

creases by 19.3% compared to that with Pucket disabled.
However, without the Pucket, the 95%-ile latency of FaaS-
Mem decreases by 9.2%, which indicates that Pucket causes
the latency increase. But such increase is within our expec-
tation, as the Pucket is designed to suffer a small number

0 1 2 3 4
Timeline (h)

1

2

3

Lo
ca

l M
em

or
y

(G
B)

Baseline
FaaSMem

FaaSMem w/o Pucket
FaaSMem w/o Semi-warm

AVG P50 P95 P990.00

0.05

0.10

0.15

E2
E

La
te

nc
y

(s
)

Baseline
FaaSMem

FaaSMem w/o Pucket
FaaSMem w/o Semi-warm

0

1

2

Av
g.

 M
em

or
y

(G
B)

(a) Common case

AVG P50 P95 P990.00
0.05
0.10
0.15
0.20

E2
E

La
te

nc
y

(s
)

Baseline
FaaSMem

FaaSMem w/o Pucket
FaaSMem w/o Semi-warm

0

1

2

Av
g.

 M
em

or
y

(G
B)

(b) Bursty case

Figure 13. The latency and memory usage on whether to
disable Pucket and Semi-warm of benchmark Bert.

of remote memory accesses as a tradeoff for offloading cold
pages.
The effectiveness of Semi-warm. Without the semi-

warm period, the memory footprint timeline is higher than
that with semi-warm period, but parallel to the baseline’s
curve and exhibiting the same characteristics, i.e., it will
suddenly decrease at some time. This arises from the fact that
the container is removed from memory only when it exceeds
the 10-minute keep-alive timeout, which results in a long
waste. Instead, FaaSMem gradually offloads memory during
semi-warm, rather than wait for timeout. This approach
reduces the memory by 28.6%.

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0% 50% 100%
Semi-warm Time / Total Lifetime

0.0

0.5

1.0

CD
F All

High load
Middle load
Low load

10min 20min 40min 1h
Container Lifetime

0.0

0.5

1.0

CD
F

High load
Middle load
Low load

Figure 14. The semi-warm benefits across container lifetime.

8.3.2 Bursty Case. Figure 13b demonstrates the latency
and memory usage of Bert under a much more bursty trace.
Effect of Semi-warm on Pucket. In this case, we find

that the effect of semi-warm partly outweights the Pucket,
i.e., the local memory without Pucket is close to the enabled.
This is because the bursty case results in numerous keep-
alive containers whose cold pages can also be offloaded dur-
ing the semi-warm, just at a later time compared to Pucket.

The QoS guarantee via pessimistic estimation. Theo-
retically, by choosing a 99%-ile container reused intervals,
FaaSMem can guarantee the e2e latency of 99% requests.
However, under the bursty case, the 99%-ile latency of FaaS-
Mem increases by 25.0% compared to that without semi-
warm, while this phenomenon does not appear under the
common case. This exception comes from the fact the data
of container reused intervals does not take the cold-start
impact into account. Under the bursty load, the cold-start in-
cidents increase, resulting in the collected 99%-ile container
reused intervals being smaller than the ideal value, making
the semi-warm policy misestimate the 99%-ile latency.
Therefore, in order to guarantee 95% of the requests, we

should pessimistically choose the a higher SLA, i.e., the 99%-
ile. Thus, there is also an opportunity to select a more precise
timing, by taking the cold-start incidents into account, in
order to further reduce the keep-alive memory footprint.

8.4 Applicability of Semi-warm
To study the applicability of semi-warm across diverse work-
loads, we categorize the total 424 functions in Azure trace
into three categories - high (≥ 512), medium, and low (≤ 64)
- based on the average number of invocations per day, and
investigate the time proportion of semi-warm period.

Figure 14 shows the distribution of the time proportion of
semi-warm and the container lifetime across diverse func-
tions. A higher proportion of semi-warm indicates that this
function will save more memory with the help of semi-warm.

As a result, semi-warm period takes up more than one-half
of container lifetime among 50% functions. This indicates
that the mechanism of semi-warm is widely applicable for
different invocation patterns. On top of that, we can find that
it is more effective for both high-load and low-load functions.
This is because the proportion of short-lived containers is
high under both condition and short-lived containers will

bert graph web float
matmul

linpack
image

chame.
pyaes gzip json0.0

2.5
5.0
7.5

10.0

Ov
er

he
ad

 (m
s) Runtime-Init Barrier

Init-Execution Barrier
Periodic Rollback

Figure 15. Overhead of time barrier and rollback in Pucket.

magnify the effect of semi-warm. For the low-load functions,
a large scale of containers cannot be reused after created,
while for the high-load functions, short-term surge creates a
large number of short-lived containers.

Conversely, themiddle-load functions tend to have a stable
invocation pattern that results in most containers being lived
for a long time, and therefore have less chance of enjoying
semi-warm period.

8.5 Overhead of Puckets
Figure 15 shows the procedure overhead of Pucket.

Time barrier. The process of the insertion of time barrier
is blocked to accurately segregate the memory pages into
multiple segments. For eight micro-benchmarks, the inser-
tion of the runtime-init barrier and init-execution barrier
takes less than 2.5 ms. For three applications, the runtime-init
barrier also takes less than 2.5 ms, but it takes 10, 5, and 5 ms
for Bert, Graph, and Web to insert the init-execution barrier,
respectively. The overhead increases due to the increased
memory footprint of these applications during initialization.
Overall, as the insertions only occur during cold-start, the
overhead is negligible compared to the total cold-start time.

Periodic rollback. For all benchmarks, the time of a roll-
back is less than 7.5 ms, and we recommend that each round
should be performed at the interval of at least 10 s, which
ensures the overall overhead is less than 0.1%.

8.6 Production Density Evaluation
In production environment, each container has a predefined
memory quota, which is used to schedule and deploy. There-
fore, we consider the offload amount as a reducible amount
of the quota. For example, if a 128 MB-quota container can
offload 28 MB via FaaSMem, we then treat the new quota
under FaaSMem is 100 MB. Considering the actual memory
usage, we assign 1280, 256, 384 MB as the original mem-
ory quota for the three applications, Bert, Graph, and Web,
respectively. Then, we randomly select 20 Azure traces to
investigate the relevant factors affecting the deployment den-
sity. Figure 16 shows the remote bandwidth consumption
and the production density under different traces of the three
applications.
First, we take a look at the bandwidth consumption. As

can be seen from the figure, the remote bandwidth increases
near linearly as the request load increases. However, the

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

0 50 100
Req per Minute

0.0

2.0

4.0

Ba
nd

wi
dt

h
(M

/s
)

0 100 200
Req per Minute

1.0

1.2

1.4

De
ns

ity

0 20 40
σ of Req Intervals

1.0

1.2

1.4

De
ns

ity

(a) Bert

0 50 100
Req per Minute

0.0

1.0

0 100 200
Req per Minute

1.0

1.2

1.4

0 20 40
σ of Req Intervals

1.0

1.2

1.4

(b) Graph

0 50 100
Req per Minute

0.0

2.0

0 100 200
Req per Minute

1.0

1.5

2.0

0 20 40
σ of Req Intervals

1.0

1.5

2.0

(c) Web

Figure 16. The remote bandwidth consumption and the
estimated density improvement under diverse traces.

bandwidth also increases when the load is extremely low.
This is because the low-frequency invocation characteristics
could lead to an earlier start timing of semi-warm period
during keep-alive.
We then focus on the density improvement. For Bert,

Graph, and Web, FaaSMem offers up to 1.4X, 1.4X, and 2.2X
density improvement, respectively. Each scatter in the figure
represents a particular trace. We then investigate two poten-
tially relevant factors, request loads and request intervals.
We find that the density improvement is positively cor-

related with the request loads, which matches the trend in
Section 8.2.1. As the number of requests per minute increases,
FaaSMem gains higher density, since Pucket can gather more
requests within a shorter time to perform the offloading.
Meanwhile, higher loads are more likely to incur burst with
more semi-warm benefits, as discussed previously.
Besides, we also find a negative corelation with the stan-

dard deviation (𝜎) of request intervals. This is because when
𝜎 of the request intervals increases, the distribution of re-
quest intervals is more scattered. In this case, the semi-warm
period starts later, leading tomore pages to reside for a longer
time in the hot page pool outside the Pucket.

9 Discussion
Bandwidth provision and latency analysis under large-
scale deployment. In all our experiments, each container
consumes no more than 0.82 MB/s remote bandwidth in aver-
age. According to the production data [41], a single compute
node with 384 GB memory holds up to 2500 containers. As
FaaSMem offers up to 2X density improvement, the band-
width required of a node holding 5000 containers is around

32 Gbps. Given that memory pools are often configured at
rack level [40] to avoid the time-consuming cross-rack com-
munication, only the compute nodes in a rack (around 10
nodes) can access the memory pool in the same rack. In this
way, the memory pools work individually, and each requires
an aggregated bandwidth of 320 Gbps for serving the 10
compute nodes within a rack. To this end, today’s network
adapter offers up to 400 Gbps RDMA network, and the band-
width capacity can be further extended by using multiple
network adapters. Meanwhile, there is little communication
latency increase until the bandwidth is saturated [33, 61, 64].
Therefore, neither bandwidth nor latency will become a bot-
tleneck under large-scale deployment.
Building memory pool. Considering that most of the

existing serverless workloads are web applications [32, 70],
the ratio of local to remote memory usage for web is between
1:0.5 and 1:1.1 under different traces. Therefore, we recom-
mend a local-remote ratio around 1:0.8. For a rack consisting
10 compute nodes with 384 GB each, the correspond memory
node should offer 3 TB memory. As discussed in Section 2.2,
the memory node can reuse the old memory with negligible
cost. In this way, the memory pool architecture could lead
to a 44% reduction in DRAM cost.

CXL-basedmemory pool. CXL is an emerging approach
that offers higher bandwidth with lower latency compared
to the RDMA-based memory pool [27], which FaaSMem’s
mechanism can also be applied, as it is not limited to a cer-
tain implementation of memory pool. However, there is no
production-available hardware support for CXL-based mem-
ory pool currently. Offloading to SSDs is another possible
solution. However, SSDs have limited write durability, e.g.
Meta needs to limit their write speeds to less than 1MB/s [65].
It does not meet the bandwidth demands of FaaSMem.

Hardware-based page sampling method. Many works
have focused on reducing the overhead of cold-page identi-
fication by using hardware-level sampling [24, 39, 47], e.g.,
Intel’s Precise Event Based Sampling [14], and this approach
can also be integrated into FaaSMem. Although FaaSMem’s
Pucket is based on page table tracing, it already has negligible
overhead by the window-based rollback and offloading.
Memory sharing in serverless. To reduce the mem-

ory usage, many works [41, 55] have also explored to share
memory in serverless computing. For instance, FAASM [59]
shares the runtime across different containers of one func-
tion. However, as for the init segment and the exec segment,
it can only mitigate the duplicate state variables and requires
an intrusive user-code reorganization. By combining these
techniques, FaaSMem can further reduce memory footprint.

Limitations and future work. Our current evaluations
are conducted on a 2-node cluster, which may not be able
to cover all situations that would occur in the large-scale
deployment. Considering that different nodes may have dif-
ferent loads, memory pooling could potentially yield further
benefits for nodes that are memory stranded. Meanwhile,

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

under extreme load-imbalance, there may not be enough
local memory space to call back the semi-warm containers
from remote and requires the rescheduling, which we treat
as future work.

10 Related Work
Remote Memory Pool. There are two popular memory
pool architectures. The first is swap-based, which memory
is swapped to the remote node via Remote Direct Memory
Access (RDMA). Infiniswap [28] maps the remote memory
pool to a local file to support the remote memory swapping.
Fastswap [15] modifies the Linux kernel to speed up the
swapping process. Besides, many works [30, 46, 52, 62] have
also explored and optimized this approach. The second is
through Compute Express Link (CXL) [6], which requries
specific hardware support, and some works [27, 67] have
also explored to design the correspond hardware. These re-
searches are orthogonal to FaaSMem, as FaaSMem focuses
on tailoring the serverless paradigm under the memory pool
architecture, while they focused on constructing the memory
pool and improving the underlying performance.
Memory Offloading. Many works have explored the

opportunity to offload memory. TMO [65] offloads memory
step-by-step and proposes the Pressure Stall Information to
monitor the corresponding slowdown. TPP [47] offers an
OS-level mechanism to identify and place hot and cold pages
between local and remote, while Pond [40] uses machine
learning to develop the offload policy for VMs. Meanwhile,
many other works [7, 24, 35, 39, 51, 53, 66] also focus on
developing the offload policies. These efforts offer memory
offloading solutions to long-term tasks, but their design is not
applicable to serverless scenarios. Since serverless containers
are transient, the periodic keep-alive stage can disrupt the
traditional policy making.
Keep-alive Strategy.Many prior researches focused on

adjusting the keep-alive strategy to save resources and alle-
viate cold-start in serverless computing [21, 44, 54, 57, 68].
For example, a hybrid histogram policy is proposed [57] to
proactively pre-warm containers and set a lower keep-alive
threshold. FaaSMem introduces a semi-warm period under
memory pool architecture to reduce local memory usage,
combining the above works can gain more benefits.

11 Conclusion
We propose FaaSMem, a memory offloading mechanism
to improve the memory efficiency of serverless computing
with memory pool architecture. FaaSMem brings a new so-
lution to serverless memory inefficiencies. Specifically, it
introduces Pucket to segregate different pages into three seg-
ments and develop the segment-wise offloading policies. The
semi-warm period proposed in FaaSMem further efficiently
offloads the hot pages during keep-alive stage. Experimental

results through real-world traces show that FaaSMem can ef-
ficiently utilize the memory pool architecture to reduce local
memory footprint with negligible performance degradation.

Acknowledgment
We thank the anonymous reviewers and our shepherd, Ro-
drigo Fonseca, for their helpful comments and suggestions.
This work is partially sponsored by the National Key Re-
search andDevelopment Program of China (2022YFB4501400)
and National Natural Science Foundation of China (62232011,
62302302, 61832006). Quan Chen is the corresponding author.

A Artifact Appendix
A.1 Abstract
Our artifact includes the prototype implementation of FaaS-
Mem, the Fastswap [15] ported to Linux 6.1, the 11 bench-
marks, and the experiment workflow to run these bench-
marks on CloudLab c6220 instances.

A.2 Artifact check-list (meta-information)
• Program: FaaSMem, Fastswap, Docker runtime, Python.
• Data set: Azure Functions Invocation Trace 2021 [69].
• Run-time environment: Ubuntu 22.04 with a modified
Linux 6.1 kernel. Detailed dependencies and installations are
listed and scripted in the artifact.

• Hardware: CloudLab c6220 instances (16 cores, 64 GBmem-
ory) connected through InfiniBand network (via Mellanox
CX3 NIC).

• Metrics: End-to-end latency, memory usage, throughput.
• Output: JSON files and PDF graph.
• Experiments: Python scripts.
• How much disk space required (approximately)?: 80
GB.

• How much time is needed to prepare workflow (ap-
proximately)?: 2 hours.

• How much time is needed to complete experiments
(approximately)?: 11 days.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.10791101

A.3 Description
A.3.1 How to access. The source code of FaaSMem are
available and maintained on GitHub. Visit https://github.
com/BarrinXu/FaaSMem for more information. You can also
follow the README.md in the repository to perform the in-
stallation and the evaluation.

A.3.2 Hardware dependencies. FaaSMem requires two
nodes, and we STRONGLY RECOMMEND to use the Cloud-
Lab c6220 instances, which have already satisfied the follow-
ing requirements. Each node should have at least 16 cores,
64 GB memory and 80 GB free disk space. Besides, nodes
should be connected through a RDMA-compatible network
(e.g., InfiniBand).

https://github.com/BarrinXu/FaaSMem
https://github.com/BarrinXu/FaaSMem

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

A.3.3 Software dependencies. The artifact requires the
experiment running Ubuntu 22.04 with a modifed Linux 6.1
kernel. FaaSMem is required to run in a Python 3.8 virtual en-
vironment. The benchmarks are required to run in a Docker.
We provide an installation script to prepare all the software
dependencies.

A.4 Installation
From now on, you have two nodes, a compute node and a
memory node. Both nodes are running Ubuntu 22.04. MAKE
SURE you are operating under root at anytime.

A.4.1 Install the modified Linux 6.1 kernel on the
compute node. Enter linux-6.1.55-fastswap directory.
Execute bash install_kernel.sh.
This script first installs the dependent tools needed to

compile the kernel, then compiles and installs the kernel,
and finally REBOOTS the machine.
Check: After rebooting, please check that the currently

running kernel is 6.1.55-fastswap, by executing uname
-r in a terminal. If not, make sure the kernel is successfully
installed and listed, and then specify this kernel version to
boot the machine.
Attention: This script uses a kernel config file that is

compatible with CloudLab c6220 instances, and is likely in-
compatible with other hardware instances, which may have
to reconfigure the config file and modify the script.

A.4.2 Install the software dependencies on the com-
pute node. Enter FaaSMem-core directory. Execute bash
install_software.sh.
This script first installs Python 3.8 and creates a Python-

3.8 virtual environment venv under FaaSMem-core. It then
unzip the Azure invocation trace. Finally, it installs Docker,
builds images for 11 benchmarks.

Check:After the script is complete, there should be a venv
dir under FaaSMem-core. You can also find 12 new images
by executing docker images.

A.4.3 Create a swapfile on the compute node. Enter
Fastswap directory. Execute bash create_swapfile.sh.
This script will require an interactive input, which is the

directory to create the swapfile. The directory MUST be
under an ext4 partition, and has at least 32 GB free space.

Check: After the script is complete, there should be a 32
GB swapfile under the directory you specified.

A.4.4 Install the RDMA driver and compile Fastswap
on the compute node and the memory node. First, on
both nodes, enter Fastswap directory and execute bash
install_rdma.sh. This script installs the RDMA driver and
REBOOTS the machine.

Second, after rebooting, enter Fastswap directory. On the
compute node, execute bash build_fastswap_driver.sh.
On the memory node, execute bash build_fastswap_
server.sh.

Check: Execute ibstat on each node. You should see
from the output that the network adapter is up.

A.5 Experiment workflow
MAKE SURE you are operating under root at anytime.

A.5.1 Pre-experiment operations. The operations in
this subsection need to be executed only once. DO NOT
execute it multiple times UNLESS you have rebooted both
the compute node and the memory node.

1. On the compute node, enter Fastswap directory, and
execute bash pre_experiment.sh. This script will re-
quire an interactive input for the swapfile directory. It
first disables the transparent huge page and the numa
balancing. It then enable the swapfile created early
before.
Check: Execute swapon -s, you will see the only one
swapfile, which is exactly the one created before.

2. Configure the IP address for the compute node and the
memory node.
First, you need to obtain the adapter interface name, by
executing ibstat in the terminal. In CloudLab c6220
instance, the name should be ibp130s0.
Second, check the interface name exists in the output
by executing ifconfig -a.
Third, assign IP address for the interface of each node.
For instance, execute ifconfig ibp130s0
192.168.125.x/24 for the compute node, execute
ifconfig ibp130s0 192.168.125.y/24 for themem-
ory node. Here, x and y MUST be different, and are
RECOMMENDED to follow the suffix of node ID in
the CloudLab to avoid duplication with other users.
Check: Execute ifconfig ibp130s0 on each node
to verify the IP address you configured. Execute ping
192.168.125.y on the compute node.

3. On the memory node, open a window using screen or
tmux. Then enter Fastswap directory. Execute bash
run_fastswap_server.sh to start the server formem-
ory offloading. You can detach the window, DO NOT
terminate it.
Check: The output of the script contains "listening on
port 50000".

4. On the compute node, enter Fastswap directory. Then
execute bash run_fastswap_driver.sh to connect
the memory node. The script will require two interac-
tive input, the first is the compute node IP, and the
second is the memory node IP.
Check: On the compute node, execute dmesg | grep
ctrl, you can see "ctrl is ready for reqs".

5. On the compute node, open three windows (Window-
1, Window-2, Window-3) using screen or tmux. All
of them MUST source the virtual environment venv
under FaaSMem-core. DO NOT terminate them.

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

6. In Window-1, enter FaaSMem-core/src/
workflow_manager, execute python gateway.py, which
starts the gateway of FaaSMem to receive requests. In
Window-2, enter FaaSMem-core/src/
workflow_manager, execute python test_server.py
127.0.0.1, which starts the server of FaaSMem to pro-
cess requests. DO NOT terminate them.

Attention: If any node suffers a reboot during the experi-
ment, the remote connection is broken. You need to reboot
both nodes and perform the operations listed in this subsec-
tion again.

A.5.2 Conduct each experiment. Each directory within
FaaSMem-core/test/AE corresponds to one experiment. You
should use Window-3, enter each directory, and execute
python test.py to conduct the experiment. Once the ex-
periment ends, a series of JSON files will be saved to the
result subdirectory. Detailed scripts usage is introduced in
the README.md under the repository.

A.6 Evaluation and expected results
Within each experiment directory, we prepare some draw
scripts draw*.py. You should also source the virtual envi-
ronment venv under FaaSMem-core before executing them.
Then, you can enter each experiment directory, and execute
python draw*.py to visualize the results. Each script will
save a PDF format graph in the current directory, except that
one script will output a table in the terminal. The graphs and
tables generated can be compared with those in the paper.

References
[1] Amazon neptune serverless – amazon web services. https://aws.

amazon.com/neptune/serverless/, 2023.
[2] Apache openwhisk is a serverless, open source cloud platform. https:

//openwhisk.apache.org/, 2023.
[3] Aws lambda documentation. https://docs.aws.amazon.com/lambda/

index.html, 2023.
[4] Build your first serverless web app – amazon web services. https:

//aws.amazon.com/serverless/build-a-web-app/, 2023.
[5] Cloud functions. https://cloud.google.com/functions, 2023.
[6] Compute express link. https://www.computeexpresslink.org/, 2023.
[7] Damon: Data access monitor. https://www.kernel.org/doc/html/latest/

admin-guide/mm/damon/, 2023.
[8] Memory management — the linux kernel documentation. https://docs.

kernel.org/admin-guide/mm/index.html, 2023.
[9] Multi-gen lru — the linux kernel documentation. https://docs.kernel.

org/admin-guide/mm/multigen_lru.html, 2023.
[10] Multi-generational lru: the next generation. https://lwn.net/Articles/

856931/, 2023.
[11] Serverless computing - aws lambda - amazon web services. https:

//aws.amazon.com/lambda/, 2023.
[12] Serverless functions in computing - microsoft azure. https://azure.

microsoft.com/en-us/products/functions/, 2023.
[13] The state of serverless 2020 | datadog. https://www.datadoghq.com/

state-of-serverless-2020/, 2023.
[14] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative evalua-

tion of intel PEBS overhead for online system-noise analysis. In

Torsten Hoefler and Kamil Iskra, editors, Proceedings of the 7th Interna-
tional Workshop on Runtime and Operating Systems for Supercomputers,
ROSS@HPDC 2017, Washingon, DC, DC, USA, June 27 - 27, 2017, pages
3:1–3:8. ACM, 2017.

[15] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. Can far memory improve job throughput? In
Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic,
and Margo I. Seltzer, editors, EuroSys ’20: Fifteenth EuroSys Conference
2020, Heraklion, Greece, April 27-30, 2020, pages 14:1–14:16. ACM, 2020.

[16] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. On-
demand container loading in AWS lambda. In Julia Lawall and Dan
Williams, editors, 2023 USENIX Annual Technical Conference, USENIX
ATC 2023, Boston, MA, USA, July 10-12, 2023, pages 315–328. USENIX
Association, 2023.

[17] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, ShengWang, Qingda
Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang,
Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian
Wu, Wei Hu, Jianwei Zhao, Yusong Gao, Songlu Cai, Yunyang Zhang,
and Jiawang Tong. Polardb serverless: A cloud native database for
disaggregated data centers. In Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava, editors, SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, pages
2477–2489. ACM, 2021.

[18] Paul C. Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. The rise of serverless computing. Commun. ACM, 62(12):44–
54, 2019.

[19] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Xanadu: Mit-
igating cascading cold starts in serverless function chain deployments.
In Dilma Da Silva and Rüdiger Kapitza, editors, Middleware ’20: 21st
International Middleware Conference, Delft, The Netherlands, December
7-11, 2020, pages 356–370. ACM, 2020.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805, 2018.

[21] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computing with initialization-less booting. In James R.
Larus, Luis Ceze, and Karin Strauss, editors, ASPLOS ’20: Architectural
Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, March 16-20, 2020, pages 467–481. ACM, 2020.

[22] Zhuohui Duan, Haikun Liu, Haodi Lu, Xiaofei Liao, Hai Jin, Yu Zhang,
and Bingsheng He. Gengar: An rdma-based distributed hybrid memory
pool. In 41st IEEE International Conference on Distributed Computing
Systems, ICDCS 2021, Washington DC, USA, July 7-10, 2021, pages 92–
103. IEEE, 2021.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuang-Ching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of cloudlab. In Dahlia Malkhi and Dan Tsafrir, editors, 2019 USENIX
Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July
10-12, 2019, pages 1–14. USENIX Association, 2019.

[24] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David E.
Culler, Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey,
Danijela Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang
Ren, Greg Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ran-
ganathan, and Amin Vahdat. Towards an adaptable systems archi-
tecture for memory tiering at warehouse-scale. In Tor M. Aamodt,
Natalie D. Enright Jerger, and Michael M. Swift, editors, Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, Vancouver, BC, Canada, March 25-29, 2023, pages 727–741. ACM,

https://aws.amazon.com/neptune/serverless/
https://aws.amazon.com/neptune/serverless/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://docs.aws.amazon.com/lambda/index.html
https://docs.aws.amazon.com/lambda/index.html
https://aws.amazon.com/serverless/build-a-web-app/
https://aws.amazon.com/serverless/build-a-web-app/
https://cloud.google.com/functions
https://www.computeexpresslink.org/
https://www.kernel.org/doc/html/latest/admin-guide/mm/damon/
https://www.kernel.org/doc/html/latest/admin-guide/mm/damon/
https://docs.kernel.org/admin-guide/mm/index.html
https://docs.kernel.org/admin-guide/mm/index.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://lwn.net/Articles/856931/
https://lwn.net/Articles/856931/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

2023.
[25] Alexander Fuerst and Prateek Sharma. Faascache: keeping serverless

computing alive with greedy-dual caching. In Tim Sherwood, Emery D.
Berger, and Christos Kozyrakis, editors, ASPLOS ’21: 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021, pages
386–400. ACM, 2021.

[26] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, João Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Network requirements for resource disaggregation. In Kimberly Kee-
ton and Timothy Roscoe, editors, 12th USENIX Symposium onOperating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, pages 249–264. USENIX Association, 2016.

[27] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. Direct access, high-performance memory disaggregation with
directcxl. In Jiri Schindler and Noa Zilberman, editors, 2022 USENIX
Annual Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA,
July 11-13, 2022, pages 287–294. USENIX Association, 2022.

[28] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient memory disaggregation with infiniswap.
In Aditya Akella and Jon Howell, editors, 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2017, Boston, MA,
USA, March 27-29, 2017, pages 649–667. USENIX Association, 2017.

[29] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. Who limits the resource efficiency of my
datacenter: an analysis of alibaba datacenter traces. In Proceedings of
the International Symposium on Quality of Service, IWQoS 2019, Phoenix,
AZ, USA, June 24-25, 2019, pages 39:1–39:10. ACM, 2019.

[30] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. Clio: a hardware-software co-designed disaggregated memory
system. In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F.
Wenisch, editors, ASPLOS ’22: 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, Lausanne, Switzerland, 28 February 2022 - 4 March 2022, pages
417–433. ACM, 2022.

[31] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable
serverless computing for latency-sensitive, interactive microservices.
In Tim Sherwood, Emery D. Berger, and Christos Kozyrakis, editors,
ASPLOS ’21: 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pages 152–166. ACM, 2021.

[32] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, João Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. CoRR, abs/1902.03383,
2019.

[33] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guide-
lines for high performance RDMA systems. In Ajay Gulati and Hakim
Weatherspoon, editors, 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016, pages 437–450.
USENIX Association, 2016.

[34] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for
serverless faas. In Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, page
477. ACM, 2019.

[35] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the
design space of page management for multi-tiered memory systems.
In Irina Calciu and Geoff Kuenning, editors, 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021, pages 715–
728. USENIX Association, 2021.

[36] Mohit Kumar, Subhash Chander Sharma, Anubhav Goel, and Santar Pal
Singh. A comprehensive survey for scheduling techniques in cloud
computing. J. Netw. Comput. Appl., 143:1–33, 2019.

[37] H. Andrés Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agar-
wal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chau-
gule, Nan Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever,
Yu Zhao, and Parthasarathy Ranganathan. Software-defined far mem-
ory in warehouse-scale computers. In Iris Bahar, Maurice Herlihy, Em-
mett Witchel, and Alvin R. Lebeck, editors, Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019, pages 317–330. ACM, 2019.

[38] Seung-Seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. MIND: in-network memory man-
agement for disaggregated data centers. In Robbert van Renesse and
Nickolai Zeldovich, editors, SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021, pages 488–504. ACM, 2021.

[39] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. MEMTIS: efficient memory tiering with dynamic page classifi-
cation and page size determination. In Jason Flinn, Margo I. Seltzer,
Peter Druschel, Antoine Kaufmann, and Jonathan Mace, editors, Pro-
ceedings of the 29th Symposium on Operating Systems Principles, SOSP
2023, Koblenz, Germany, October 23-26, 2023, pages 17–34. ACM, 2023.

[40] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. Pond: Cxl-based memory pooling systems for cloud platforms.
In Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift,
editors, Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023,
pages 574–587. ACM, 2023.

[41] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao,
Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo. Rund: A light-
weight secure container runtime for high-density deployment and
high-concurrency startup in serverless computing. In Jiri Schindler
and Noa Zilberman, editors, 2022 USENIX Annual Technical Conference,
USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022, pages 53–68.
USENIX Association, 2022.

[42] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help
rather than recycle: Alleviating cold startup in serverless computing
through inter-function container sharing. In Jiri Schindler and Noa
Zilberman, editors, 2022 USENIX Annual Technical Conference, USENIX
ATC 2022, Carlsbad, CA, USA, July 11-13, 2022, pages 69–84. USENIX
Association, 2022.

[43] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bingsheng He, and
Minyi Guo. The serverless computing survey: A technical primer for
design architecture. ACM Comput. Surv., 54(10s):220:1–220:34, 2022.

[44] Wes Lloyd, Minh Vu, Baojia Zhang, Olaf David, and George H. Leaves-
ley. Improving application migration to serverless computing plat-
forms: Latency mitigation with keep-alive workloads. In Alan Sill
and Josef Spillner, editors, 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion, UCC Companion 2018, Zurich,
Switzerland, December 17-20, 2018, pages 195–200. IEEE, 2018.

[45] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. ORION and the three
rights: Sizing, bundling, and prewarming for serverless dags. In Mar-
cos K. Aguilera and Hakim Weatherspoon, editors, 16th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2022,
Carlsbad, CA, USA, July 11-13, 2022, pages 303–320. USENIX Associa-
tion, 2022.

[46] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching
remote memory with leap. In Ada Gavrilovska and Erez Zadok, editors,
2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-
17, 2020, pages 843–857. USENIX Association, 2020.

FaaSMem: Improving Memory Efficiency of Serverless Computing with Memory Pool Architecture ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[47] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit O. Kanaujia, and Prakash Chauhan. TPP: transparent
page placement for cxl-enabled tiered-memory. In Tor M. Aamodt,
Natalie D. Enright Jerger, and Michael M. Swift, editors, Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, Vancouver, BC, Canada, March 25-29, 2023, pages 742–755. ACM,
2023.

[48] M. GarrettMcGrath and Paul R. Brenner. Serverless computing: Design,
implementation, and performance. In Aibek Musaev, João Eduardo
Ferreira, and Teruo Higashino, editors, 37th IEEE International Confer-
ence on Distributed Computing Systems Workshops, ICDCS Workshops
2017, Atlanta, GA, USA, June 5-8, 2017, pages 405–410. IEEE Computer
Society, 2017.

[49] Amirhossein Mirhosseini, Sameh Elnikety, and Thomas F. Wenisch.
Parslo: A gradient descent-based approach for near-optimal partial
SLO allotment inmicroservices. In Carlo Curino, Georgia Koutrika, and
Ravi Netravali, editors, SoCC ’21: ACM Symposium on Cloud Computing,
Seattle, WA, USA, November 1 - 4, 2021, pages 442–457. ACM, 2021.

[50] Anup Mohan, Harshad S. Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable
serverless. In Christina Delimitrou and Dan R. K. Ports, editors, 11th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2019,
Renton, WA, USA, July 8, 2019. USENIX Association, 2019.

[51] Seongjae Park, Yunjae Lee, and Heon Y. Yeom. Profiling dynamic
data access patterns with controlled overhead and quality. In Dejan S.
Milojicic and Vinod Muthusamy, editors, Proceedings of the 20th In-
ternational Middleware Conference Industrial Track, Davis, CA, USA,
December 9-13, 2019, pages 1–7. ACM, 2019.

[52] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda
Lu, Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. Hermit:
Low-latency, high-throughput, and transparent remote memory via
feedback-directed asynchrony. In Mahesh Balakrishnan and Manya
Ghobadi, editors, 20th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2023, Boston, MA, April 17-19, 2023,
pages 181–198. USENIX Association, 2023.

[53] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. Hemem: Scalable tiered memory management for big data appli-
cations and real NVM. In Robbert van Renesse and Nickolai Zeldovich,
editors, SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, pages
392–407. ACM, 2021.

[54] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker: warm-
ing serverless functions better with heterogeneity. In Babak Falsafi,
Michael Ferdman, Shan Lu, and Thomas F. Wenisch, editors, ASPLOS
’22: 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne, Switzerland,
28 February 2022 - 4 March 2022, pages 753–767. ACM, 2022.

[55] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. Memory deduplication for serverless computing with medes.
In Yérom-David Bromberg, Anne-Marie Kermarrec, and Christos
Kozyrakis, editors, EuroSys ’22: Seventeenth European Conference on
Computer Systems, Rennes, France, April 5 - 8, 2022, pages 714–729.
ACM, 2022.

[56] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. Serverless
computing: A survey of opportunities, challenges, and applications.
ACM Comput. Surv., 54(11s):239:1–239:32, 2022.

[57] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In Ada Gavrilovska and Erez Zadok, editors, 2020 USENIX Annual Tech-
nical Conference, USENIX ATC 2020, July 15-17, 2020, pages 205–218.

USENIX Association, 2020.
[58] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos:

A disseminated, distributed OS for hardware resource disaggregation.
In Andrea C. Arpaci-Dusseau and Geoff Voelker, editors, 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages 69–87. USENIX
Association, 2018.

[59] Simon Shillaker and Peter R. Pietzuch. Faasm: Lightweight isolation
for efficient stateful serverless computing. In Ada Gavrilovska and
Erez Zadok, editors, 2020 USENIX Annual Technical Conference, USENIX
ATC 2020, July 15-17, 2020, pages 419–433. USENIX Association, 2020.

[60] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. Sequoia: enabling quality-of-service in serverless computing.
In Rodrigo Fonseca, Christina Delimitrou, and Beng Chin Ooi, editors,
SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA,
October 19-21, 2020, pages 311–327. ACM, 2020.

[61] Robert Underwood, Jason Anderson, and Amy W. Apon. Measuring
network latency variation impacts to high performance computing
application performance. In Katinka Wolter, William J. Knottenbelt,
André van Hoorn, and Manoj Nambiar, editors, Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering, ICPE
2018, Berlin, Germany, April 09-13, 2018, pages 68–79. ACM, 2018.

[62] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Wenguang Chen, Ravi
Netravali, Miryung Kim, and Guoqing Harry Xu. Canvas: Isolated
and adaptive swapping for multi-applications on remote memory.
In Mahesh Balakrishnan and Manya Ghobadi, editors, 20th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2023, Boston, MA, April 17-19, 2023, pages 161–179. USENIXAssociation,
2023.

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael M. Swift. Peeking behind the curtains of serverless platforms.
In Haryadi S. Gunawi and Benjamin C. Reed, editors, 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July
11-13, 2018, pages 133–146. USENIX Association, 2018.

[64] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Decon-
structing rdma-enabled distributed transactions: Hybrid is better! In
Andrea C. Arpaci-Dusseau and Geoff Voelker, editors, 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages 233–251. USENIX
Association, 2018.

[65] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. TMO: transparent memory
offloading in datacenters. In Babak Falsafi, Michael Ferdman, Shan Lu,
and Thomas F. Wenisch, editors, ASPLOS ’22: 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4 March
2022, pages 609–621. ACM, 2022.

[66] Zi Yan, Daniel Lustig, David W. Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Iris Bahar,
Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors, Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, pages 331–345. ACM, 2019.

[67] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin-Yong
Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim.
Overcoming the memory wall with cxl-enabled ssds. In Julia Lawall
and Dan Williams, editors, 2023 USENIX Annual Technical Conference,
USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023, pages 601–617.
USENIX Association, 2023.

[68] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. Infless: a native serverless sys-
tem for low-latency, high-throughput inference. In Babak Falsafi,
Michael Ferdman, Shan Lu, and Thomas F. Wenisch, editors, ASPLOS

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, et al.

’22: 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne, Switzerland,
28 February 2022 - 4 March 2022, pages 768–781. ACM, 2022.

[69] Yanqi Zhang, Iñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster
and cheaper serverless computing on harvested resources. In Rob-
bert van Renesse and Nickolai Zeldovich, editors, SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event

/ Koblenz, Germany, October 26-29, 2021, pages 724–739. ACM, 2021.
[70] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang,

and Haibo Chen. Beehive: Sub-second elasticity for web services with
semi-faas execution. In Tor M. Aamodt, Natalie D. Enright Jerger, and
Michael M. Swift, editors, Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC, Canada,
March 25-29, 2023, pages 74–87. ACM, 2023.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Memory Inefficiency Problem
	2.2 Inefficiency of Leveraging Memory Pool

	3 Exploring FaaS Memory Usage
	3.1 Segment-1: Memory of Container Runtime
	3.2 Segment-2: Memory of Function Initialization
	3.3 Segment-3: Memory of Function Execution
	3.4 Implications and Challenges

	4 Overview of FaaSMem Mechanism
	5 Offloading Cold Pages for Puckets
	5.1 Reactive Offload for Runtime Pucket
	5.2 Window-based Offload for Init Pucket
	5.3 Periodic Page Rolling Back to Puckets

	6 Offloading Hot Pages with Semi-warm
	6.1 The Semi-warm Period
	6.2 Gradual Offloading and Bandwidth Control

	7 Implementation of FaaSMem
	8 Experimental Evaluation
	8.1 Experimental Setup
	8.2 Azure Trace Evaluation
	8.3 Ablation Experiments
	8.4 Applicability of Semi-warm
	8.5 Overhead of Puckets
	8.6 Production Density Evaluation

	9 Discussion
	10 Related Work
	11 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

