
IEEE TRANSACTIONS ON COMPUTERS 1

Adaptive Kernel Fusion for Improving the GPU
Utilization while Ensuring QoS

Han Zhao∗, Junxiao Deng∗, Weihao Cui, Quan Chen, Youtao Zhang, Deze Zeng, Minyi Guo

Abstract—The prosperity of machine learning applications has promoted the rapid development of GPU architecture. It continues to
integrate more CUDA Cores, larger L2 cache and memory bandwidth within SM. Moreover, the GPU integrates Tensor Core dedicated
to matrix multiplication. Although studies have shown that task co-location could effectively improve system throughput, existing works
only focus on resource scheduling at the SM level and cannot improve resource utilization within the SM.
In this paper, we propose Aker, a static kernel fusion and scheduling approach to improve resource utilization inside the SM while
ensuring the QoS (Quality-of-Service) of co-located tasks. Aker consists of a static kernel fuser, a duration predictor for fused kernels,
an adaptive fused kernel selector, and an enhanced QoS-aware kernel manager. The kernel fuser enables the static and flexible fusion
for a kernel pair. The kernel pair could be Tensor Core kernel and CUDA Core kernel, or computing-prefer CUDA Core kernel and
memory-prefer CUDA Core kernel. After the kernel fuser provides multiple fused kernel versions for a kernel pair, the duration predictor
precisely predicts the duration of the fused kernels and the adaptive fused kernel selector locates the optimal fused kernel version.
Finally, the kernel manager invokes the fused kernel or the original kernel based on the QoS headroom of latency-critical tasks to
improve the system throughput. Our experimental results show that Aker improves the throughput of best-effort applications compared
with state-of-the-art solutions by 50.1% on average, while ensuring the QoS of latency-critical tasks.

Index Terms—Kernel fusion, QoS, GPU scheduling

✦

1 INTRODUCTION

GPUs have gained widespread acceptance as a flexible
acceleration solution for many modern applications [1], [2].
With rapid technological advancements, GPUs are becom-
ing increasingly powerful. It keeps integrating more CUDA
Cores, larger L2 cache and memory bandwidth. Moreover,
in response to the escalating demand for acceleration in
artificial intelligence and machine learning (AI/ML) appli-
cations, recently released commercial GPUs, exemplified by
Nvidia Volta [3] and subsequent architectures, have inte-
grated Tensor Cores within streaming multiprocessors (SM)
to accelerate general matrix multiplication (GEMM), which
constitutes a fundamental operation in AI/ML applications.

Given the abundant computing resources in modern
GPUs, studies have proposed the co-location of multiple ap-
plications onto the same GPU. This effectively improves re-
source utilization and reduces system energy consumption,
particularly for computing servers in data centers. Based
on QoS (Quality-of-Service) demands, we can classify data
center applications into two categories: latency-critical (LC)
applications/services and best-effort (BE) applications. The
former refers to those that have stringent latency constraints,
e.g., to recognize interesting objects from a live video stream
without glitches, necessitating the object detection algo-
rithm to complete within 50ms [4], [5]. The latter refers to
those that have no or very loose constraints, e.g., to breadth-

• Han Zhao and Junxiao Deng contribute to this paper equally. All the
authors except Youtao Zhang and Deze Zeng are with the Department
of Computer Science and Engineering, Shanghai Jiao Tong University.
Youtao Zhang is with the Computer Science Department, University of
Pittsburgh. Deze Deng is with the School of Computer Science, China
University of Geosciences.

0 10 20 30 40 50
Timeline

C
om

pu
te

(ms)

Tensor Core CUDA Core

Fig. 1: The active timeline of Tensor Cores and CUDA Cores
when Baymax is used to run Resnet50 and sgemm.

first search a node in a graph without setting a deadline.
It is more cost-efficient to leverage the under-utilized GPU
resources to run some BE applications, while guaranteeing
the QoS in servicing an LC application.

To co-locate LC and BE applications, there are two
types of strategies: non-preemptive methods and preemp-
tive methods. Non-preemptive methods, e.g., Baymax [6]
enables the BE applications to share the unutilized GPU
cycles from LC applications. Preemptive methods, e.g.,
Rollover [7], can preempt the execution of BE kernels to
ensure the QoS of LC applications. However, off-the-shelf
GPUs currently do not support preemption due to the con-
text switch overhead [8], [9]. This paper focuses on develop-
ing novel non-preemptive co-locating strategies, which are
ready to deploy for existing commodity GPUs.

Since existing co-locating solutions only focus on the
GPU-level time-sharing between LC and BE applications,
they tend to produce suboptimal results on the GPUs with
abundant computing and memory resources. Figure 1 first
presents a suboptimal result example. In this experiment,
we use Baymax [6] co-locates LC services (Resnet50 [10]) and
BE applications (sgemm from Parboil [11]) on an Nvidia RTX
Ada6000 GPU. From the figure, we observe that, while the
GPU can be identified as computation-busy, either Tensor

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 2

Cores or CUDA Cores are idle at any given time.
Meanwhile, even for the GPU kernels only using CUDA

Core, they may prefer computing resources or memory
resources. The experimental results in Section 3.1 show
that computing-prefer kernels exhibit 80.5% computing
core utilization and 3.15% memory bandwidth utilization.
Conversely, memory-prefer kernels exhibit 85.6% memory
bandwidth utilization and 26.1% computing core utiliza-
tion. When Baymax co-locates two BE applications only
using CUDA Core, either computing resources or memory
resources are in a low utilization state at any given time.

The above two problems are referred to as the false high
utilization problem. The main reason behind this is that
existing solutions ignore the fine-grained resource usage
of the GPU kernel. By scheduling a single kernel at any
given time, they lack the ability to utilize the abundant
computing and memory resources. While commodity GPUs
place their warp scheduling in the black box, we test various
scheduling policies and have one observation. If different
warps in a thread block of a kernel perform different com-
putations, it allows for parallel utilization of Tensor Cores
and CUDA Cores, computing and memory resources. This
occurs because multiple warps within a thread block remain
active simultaneously. By fusing the Tensor Core kernel and
the CUDA Core kernel, or fusing computing-prefer kernel
and memory-prefer from different applications, we could
improve the resource utilization within the GPU.

In this paper, we propose Aker, a kernel fusion and
scheduling approach for resolving the false high utilization
problem. In order to ensure the required QoS of LC appli-
cations when fusing kernels, Aker is comprised of a static
kernel fuser, a duration predictor for fused kernels, an adaptive
fused kernel selector and an enhanced QoS-aware kernel manager.
Aker introduces no extra security vulnerability compared
with Nvidia MPS [12]. In both Aker and MPS, the original
programs launch the kernels, and a server process manages
the actual execution. Our contributions are as follows.

• We propose a static kernel fusion method to improve
resource utilization without online generation overhead.
This method uses the persistent thread block to deal with
dynamic inputs, thus avoiding online fusion overhead.

• We propose accurate prediction models for fused kernels
to ensure the QoS of LC applications. As a fused kernel
runs longer than original LC kernel, we adopt a model-
driven predictor to predict the fused kernel’s duration.

• We propose an adaptive kernel selection method to search
the optimal fused kernel version with maximum through-
put gain adaptively. This method is proposed based on
the theoretical analysis.

• We propose an online kernel management method to
execute fused kernels. It enables kernel fusion with partial
computation from original kernels. Based on that, it deter-
mines to invoke the original kernel or the fused kernel to
maximize the throughput based on QoS targets.

We evaluate the proposed approach on real hardware
(Nvidia RTX Ada6000 and V100 GPUs). Our experimental
results show that Aker not only ensures the required QoS
but also improves the throughput of the BE applications by
50.1% compared with Baymax on average (up to 91.6%).

2 RELATED WORKS

In recent years, several schemes have been developed to
improve GPU throughput [13], [14]. To achieve better GPU
scheduling, Wang et al. proposed SMK to exploit block
preemption for block-level scheduling [13]. Based on block-
level scheduling, SMK improves the system throughput by
dividing the resources carefully. Wang et al. proposed to
scale memory resources to manage memory bandwidth [15]
so that an application-aware memory scheduler may be
developed [16]. Punyala et al. [17] proposed to perform ap-
plication classification and analyze the per-class interference
and slow-down. Then they could find the best matching
between classes to maximize the throughput. These meth-
ods focus on the SM-level resource allocation and try to
minimize the interference based on related metrics.

It is important for ensure QoS (quality of service) in
GPU scheduling [18]. Baymax [6] and Prophet [8] exploited
MPS scheduling to predict performance interference among
co-located GPU applications for a temporally shared GPU.
TimeGraph [19] and GPUSync [20] adopted priority-based
scheduling to guarantee the performance of real-time ker-
nels. Sedighi et al. [21] proposed to optimize the SM alloca-
tion between component applications, which could improve
the system throughput. Since these works rely on MPS [12]
scheduling at the kernel level, they cannot exploit the paral-
lelism from two types of computing cores. Wang et al. [7]
proposed to employ fine-grained sharing of SM-internal
resources to improve QoS. When one of co-located kernels
has high priority, it would be scheduled first. These works
could only perform the kernel scheduling at the SM level,
which could not alleviate the false high utilization problem.

HSM [22] and GDP [23] predicted the slowdown of
co-located GPU applications. Compared with Aker, many
existing schemes [22], [23] rely on simulation to validate
the effectiveness and thus are not applicable to commodity
GPUs. In addition, these schemes do not consider two types
of computing cores and thus cannot explore the parallelism
between Tensor Cores and CUDA Cores. There are also re-
searches [24]–[26] for microbenchmark-based performance
model development for NVIDIA GPUs. These research
works only model the applications’ performance in different
hardware, and could not be adapted for the fused kernel’s
duration prediction. Besides the above researches, there are
some researches [27] targets the cluster-level analysis and
optimization. They are orthogonal to Aker.

3 MOTIVATION

In this section, we first elaborate on the false high utilization
problem. We then discuss the potential to improve the
resource utilization within the GPU, and summarize the
challenges in exploiting the opportunity.

3.1 The False High Utilization Problem
3.1.1 Tensor Core and CUDA Core
To elaborate on the false high utilization problem, we first
conduct an experiment to study the computing core utiliza-
tion when co-locating the kernels of an LC service and a BE
application on a modern GPU. We choose a non-preemptive
co-locating strategy Baymax [6] to exploit the idle GPU

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 3

1.0

0.5

0.0N
or

m
al

iz
ed

 D
ur

at
io

n
 CUDA Core part Tensor Core part

cp
cu
tc
p fft

m
rif

m
riq

sg
em
m

st
en
c

lb
m

ho
t3
d

la
va

pa
th nn cp

cu
tc
p fft

m
rif

m
riq

sg
em
m

st
en
c

lb
m

ho
t3
d

la
va

pa
th nn cp

cu
tc
p fft

m
rif

m
riq

sg
em
m

st
en
c

lb
m

ho
t3
d

la
va

pa
th nn cp

cu
tc
p fft

m
rif

m
riq

sg
em
m

st
en
c

lb
m

ho
t3
d

la
va

pa
th nn cp

cu
tc
p fft

m
rif

m
riq

sg
em
m

st
en
c

lb
m

ho
t3
d

la
va

pa
th nn cp

cu
tc
p fft

m
rif

m
riq

sg
em
m

st
en
c

lb
m

ho
t3
d

la
va

pa
th nn

Resnet50 Bert Vgg16 Vgg11 Inception Vit

Fig. 2: The active time of the kernels with Baymax.

100
80
60
40
20
0

U
sa

g
e

(%
)

cp cutcp fft mrif mriq sgem stenc lbm hot3d lava path nn

 CUDA Core Utilization DRAM Utilization

Fig. 3: The kernels’ computing core and memory utilization.

cycles from LC services for BE kernels. We use five DNN
models (Resnet50, Bert, V gg16, V gg11, Inception3, and
V it) as the LC services, and eight tasks (cp, cutcp, fft,
mrif , mriq, sgemm, stencil, lbm) from Parboil [11] and
four tasks (hot3d, lava, path, nn) from Rodinia [28] as the
BE applications in the experiment. Each kernel’s duration
is collected to compute the duration of all the Tensor Core
kernels and CUDA Core kernels.

Figure 2 shows the duration results of different co-
located kernel pairs. The red portion indicates the duration
of all Tensor Core kernels, while the gray portion indicates
the duration of all CUDA Core kernels. We stack the results
to show the overall active time of two hardware. From the
figure, we observe that the computing units’ overall active
time equals the QoS target for all the kernel pairs. This is
because the two types of cores are not active simultaneously.

3.1.2 Computing and memory resources

Even for the GPU kernels only using CUDA Core, they
may also have different preferences between computing and
memory resources. We collect the CUDA Core utilization
and DRAM utilization for the eight tasks from Parboil.
Figure 3 shows the resource utilization of eight applications.
By comparing the utilization of computing and memory re-
sources, we could classify the applications into computing-
prefer kernels (cp, cutcp, fft, mrif , mriq, sgemm, lava,
path) and memory-prefer kernels (stencil, lbm, hot3d, nn).
As shown from the figure, computing-prefer kernels ex-
hibit 80.5% computing core utilization and 3.15% memory
bandwidth utilization. Memory-prefer kernels exhibit 85.6%
memory bandwidth utilization and 26.1% computing core
utilization. When co-locating two applications using the
same computing cores, either the computing core or mem-
ory bandwidth is in a low utilization state at any given time.

From the above experiments, we conclude that current
strategies generate sequential and interleaving execution
of co-located LC service and BE application, which leaves
either computing and memory resources at low utilization
state. This is referred to as the false high utilization problem
in this paper. Our study shows that this problem exists
widely when co-running LC services and BE applications.

TABLE 1: The normalized duration of the five benchmarks.

1st half 2nd half Duration
Bench-A Kt Kc 1.03
Bench-B Kt Kt 2
Bench-C Kc Kc 2
Bench-D Kc Km 1.05
Bench-E Km Km 2

3.2 Potential Parallelism Opportunity
We next study the potential to improve the resource utiliza-
tion within the GPU. We construct several micro-kernels, in
which a kernel block has warps for different computations.

For example, we implement a micro-benchmark “Bench-
A” that fuses a Tensor Core kernel Kt and a CUDA Core ker-
nel Kc into one kernel. Kt and Kc have the same duration.
Kt uses the Nvidia official GEMM implementation [29], [30].
Kc has the same grid dimension and block dimension as Kt.
Each thread in Kc performs pure computation using regis-
ters and has negligible memory operations. In Bench-A, the
first half threads of each block are responsible for running
Kt, while the other half is for Kc. We also implement two
more benchmarks, “Bench-B” and “Bench-C”, as shown in
Table 1. These two benchmarks run two Kt and two Kc.

Meanwhile, we implement a micro-benchmark “Bench-
D” that fuses a CUDA Core kernel Kc and a CUDA Core
kernel Km into one kernel. Kc and Km also have the same
duration. Kc is a computing-prefer kernel as it performs
pure computation with negligible memory operations. Km

is a memory-prefer kernel, in which each thread computes
the average number between 10 variables. Km does not use
the shared memory, and each memory access reaches the
DRAM. We also implement one more benchmark “Bench-
E”, which runs two Km.

Table 1 also shows the processing time of different micro-
benchmarks. The time is normalized to the duration of Kt.
From the table, the normalized duration of Bench-A is only
1.03, while that time of either Bench-B or Bench-C is 2. In this
experiment, Kt and Kc already occupy all the Tensor Cores
and CUDA Cores, respectively, so that their normalized
execution time is 2. This further indicates that the improved
execution time of “Bench-A” comes mainly from the parallel
execution on both types of computing cores. Exploiting the
Tensor Cores and CUDA Cores in parallel can effectively
improve the overall system throughput.

As shown from Table 1, the normalized processing time
of Bench-D is only 1.05, while that time of either Bench-C or
Bench-E is 2. In this experiment, although Kc and Km all use
CUDA Core, they have different preferences over comput-
ing and memory resources. This further indicates that the
improved execution time of “Bench-D” comes mainly from
the parallel usage of computing and memory resources from
different kernels. Kernel fusion between computing-prefer
kernel and memory-prefer kernel could also effectively
improve the overall system throughput.

3.3 Challenges in Utilizing Kernel Fusion
However, directly fusing two kernels does not always bring
throughput improvement. For example, we choose Kt as
the Tensor Core kernel and kernels from Parboil [11] as
the CUDA Core kernel. Figure 4 shows the processing time

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 4

2.0

1.5

1.0

0.5N
o

rm
. d

u
ra

ti
o

n

sgem cutcp mriq fft lbm mrif stenc cp hot3d lava path nn

 GEMM kernel BE kernel Artifical fusion

Fig. 4: The duration of fused kernels with artificial fusion.

of the fused kernels. The performance of the independent
execution of each kernel is normalized to 1. From the figure,
the performance of most fused kernels is around 2, indicat-
ing direct kernel fusion brings no throughput improvement.
Moreover, the kernel fusion between two CUDA Core ker-
nels from Parboil shows the same experimental results.

Direct kernel fusion’s inefficiency comes from the con-
tention for SM resources. Since the fused kernel launches
fewer blocks on an SM, both components are slowed down.
Even with the flexible resource allocation for two compo-
nent kernels, there may also exist many possible fusion
versions for one kernel pair. How to search for the optimal
one is also an open question. Besides, kernel fusion is very
likely to introduce a longer return time. Thus, inappropriate
fusion may result in QoS violations.

To summarize, there exist four challenges in utilizing the
kernel fusion to improve the resource utilization.
• The kernel fusion has to adapt to dynamic inputs

and diverse kernels. While online fusion methods bring
high overhead, a static fusion method needs to adapt to
dynamic inputs at runtime.

• The kernel fusion has to search for the optimal fused
kernel version. Since there exist multiple kernel versions
with limited SM resources, it is hard to locate the optimal
fused kernel version.

• The kernel fusion has to quickly and precisely predict
the performance of the fused kernel. It is challenging
to make an accurate prediction, as different warps run
different computations.

• The kernel fusion demands QoS-aware online kernel
management. When multiple kernels from LC services
and BE applications are available, Aker should identify
the fusion decision that maximizes the throughput while
ensuring the QoS of LC services.

4 THE AKER DESIGN

In this section, we present the Aker design to alleviate the
false high utilization problem and guarantee the QoS of LC
service at the same time in modern GPUs.

As shown in Figure 5, Aker is a kernel fusion and
scheduling approach that consists of a static kernel fuser,
a duration predictor for fused kernels, an adaptive fused kernel
selector and an enhanced QoS-aware kernel manager. The kernel
fuser supports the static and flexible fusion for a kernel pair.
The kernel pair could be Tensor Core kernel and CUDA
Core kernel, or computing-prefer kernel and memory-prefer
kernel. The duration predictor exploits a two-stage LR
(linear regression) model to predict the duration of fused
kernels. When the static kernel fuser could provide multiple
fused kernel versions for a kernel pair, the adaptive fused
kernel selector searches for the optimal fused kernel. Finally,

LC app

…

BE apps

Aker runtime system
LC App kernel queue

Enhanced QoS-aware
kernel manager

M1 Mn… LR
Models

 Duration predictor

K1 K0K2

Static kernel fuser
+ →

Fuse

K6 K5 K0 + K4 →

Reorder

Offline
compile

TC kernel CD kernel Data Control Support

GPU

K0

Part1Part2

Split

Adaptive fused kernel selector

K5 K4K6

K8 K7K9

BE App0 kernel queue

BE App1 kernel queue

Fig. 5: The design overview of Aker.

the enhanced QoS-aware kernel manager determines the
appropriate kernels (original kernel or fused kernel with
partial workload fusion) to invoke at runtime.

To efficiently fuse two kernels, Aker transforms the
dynamic grid dimensions of the to-be-fused kernels to static
grid dimensions using Persistent Thread Block (PTB). The
transformation eliminates the need to perceive the grid
dimension online. Since the to-be-fused kernels use a dif-
ferent amount of resources (e.g., thread slots, registers, and
shared memory), another challenge is how to enable flexible
resource usage between two kernels. (Section 5).

As the fused kernel tends to finish in a longer time (com-
pared to original runs), we need to predict their duration to
ensure the QoS of LC services. The challenge here is that
the widely-used linear regression for predicting a kernel’s
latency [8] is not applicable for fused kernels, as the warps
of a thread block run different codes in a fused kernel. In
this paper, we analyze the warp scheduling in a block of
a fused kernel, and predict the execution of a fused kernel
using a two-stage linear regression model (Section 6).

When the static kernel fuser provides multiple fused ker-
nel versions due to limited resources, Aker needs to locate
the optimal fused kernel with maximum throughput gain.
Since different kernel versions could show better perfor-
mance under different inputs, it is hard to determine a fused
kernel for all inputs. We resolve this problem by assisting
the optimal kernel fusion using kernel split (Section 7).

We maintain a kernel queue for each BE application. The
kernels within this kernel queue have temporal dependency.
When making the scheduling decision, Aker picks the first
kernel in LC kernel queue and checks whether there is a
kernel in BE kernel queues can be fused with the picked
LC kernel. The LC kernels and BE kernels are not limited
to a specified type. We prioritize the selection of the fused
pair that can ensure the QoS of LC service and maximize
the throughput of BE applications at the same time. If such
a fused kernel cannot be found, the LC kernels are executed
first. After all LC kernels complete the computation, the ker-
nel fusion with two BE kernels is also considered (Section 8).

Aker can be used to manage long-running LC services in
private data centers where all the workloads are known, and Aker
has access to the applications’ codes. This is similar to those
in prior works [6]–[8]. To achieve long-term throughput
improvement, it is acceptable to profile the LC services and

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 5

BE applications and then statically fuse kernels. Moreover,
kernel fusion can also be done on the clouds based on
an application’s occurrence if the code is available. If an
application’s occurrence exceeds a threshold, Aker prepares
fused kernels for its kernels. The threshold is adjustable.

5 STATIC KERNEL FUSION

In this section, we describe the direct kernel fusion, its limi-
tations, and present our method to address these limitations.

5.1 Classifying kernels

Before kernel fusion, we need to classify the kernels into
different categories. TC kernels and CD kernels could be
classified based on the hardware usage. Furthermore, we
classify CD kernels into computing-prefer kernels, memory-
prefer kernels, and neutral kernels. A kernel with mem-
ory bandwidth utilization exceeding 50% is classified as a
memory-prefer kernel. When a kernel has computing core
utilization greater than 50% and memory utilization less
than 50%, it is classified as a computing-prefer kernel. If
both two resource utilization of a kernel are below 50%, it is
regarded as a neutral kernel. This is because memory-prefer
kernels may also have high computing core utilization. In
this paper, Aker first considers the kernel fusion of TC ker-
nel and CD kernel, computing-prefer kernel and memory-
prefer kernel. Secondly, Aker considers the kernel fusion of
computing-prefer kernel and neutral kernel, memory-prefer
kernel and neutral kernel.

Some kernels may have different features depending on
the input. Specifically, when the input to a kernel is small, it
has a relatively smaller thread block number. Consequently,
it fails to leverage all the parallelism available on the
GPU and might be classified as either a neutral kernel or
a computing-prefer kernel. On the other hand, when the
kernel has a larger input, it has a larger thread block number.
This enables it to utilize all the parallelism on the GPU and
might then be classified as a memory-prefer kernel. Faced
with the above problem, we only categorize kernels based
on their resource usage when the GPU parallelism is fully
utilized. This is because 96.1% of GPU kernels make use of
all the GPU parallelism in the benchmarks.

5.2 Direct Kernel Fusion

The direct fusion strategy is to fuse the thread blocks of
two different kernels into a new block. Figure 6 shows an
example process of fusing a CUDA Core kernel (CD kernel
for short) and a Tensor Core kernel (TC kernel for short).

In the figure, TC kernel has 2 blocks, each block has 2
warps, and thread id ranges from 0 to 63. CD kernel has 4
blocks, each block has 4 warps, and thread id ranges from 0
to 127. After kernel fusion, the fused kernel has 4 blocks,
each block has 6 warps, and thread id ranges from 0 to
191. For each block in the fused kernel, threads 0-63 are
responsible for TC kernel part while threads 64-191 are for
CD kernel part. Since each thread in the block determines its
computation based on its block id and thread id, Thread 64-
191 needs to be converted to thread 0-127 using the thread
step. Besides, each warp in the first two blocks is active

0 1 2 3

0 1

0 1 0 1 2 3

TC kernel
(2 blocks)

CD kernel
(4 blocks)

FXVHG
kernel

(4 blocks)

block0

block1

block0

block0

0 1

0 1

0 1 2 3

0 1 2 3

0 1 2 3 0 1

0 1 2 3 0 1

+

Two CUs’ parallelism

SM

CUDA core Tensor core

0 1

0 1 2 3block3

block3 0 1 2 3

0-31 32-63
……

…… … …
0-31 32-63 96-127

…… … …
64-95 160-1910-31 32-63

……

ŏŏ

ŏ ŏ

0 Warp0 … Threads

Fig. 6: An example process of direct kernel fusion.

while two warps are idle for the last two blocks. The direct
fusion for two CD kernels is the same process.

The direct kernel fusion method requires two kernels’
block numbers and block dimensions in advance. However,
the block number is determined by the task’s input that is
only known online. The direct kernel fusion method is inappro-
priate for LC services that have unstable inputs.

5.3 PTB-based Kernel Fusion

To eliminate the impact of the block number and block
dimension, we fix the block number of each kernel using
Persistent Thread Block (PTB) technique [31], [32]. PTB’s
idea is to treat each issued block as a worker on SM.
With PTB, each persistent block is assigned some tasks that
correspond to the original thread blocks. A persistent thread
block exits while it completes its assigned tasks.

We can use the source-to-source compilation to cre-
ate the PTB version of a kernel CD kernel (named by
ptb CD kernel). The compilation idea is to add one for loop
inside the original kernel, and recompute the block id in
each iteration. The original block number becomes a param-
eter of the PTB version kernel. In this way, ptb CD kernel
has the fixed block number, though the original version has
a dynamic block number that depends on the inputs. With
the fixed block number, the PTB-based kernels can be fused offline.

5.4 Flexible Kernel Fusion

The naive PTB-based method fuses two kernels’ blocks at
a 1:1 ratio. However, this ratio is likely to slow down
one component kernel. For example, assuming there are
two CD kernels K1 and K2 for fusion. To achieve original
performance, K1 needs 2 persistent block per SM, and each
block uses 16KB shared memory; K2 needs 1 persistent
block per SM, and each block uses 32KB shared memory.
When K1 and K2 are fused, a new block uses 48KB shared
memory. In this case, only a block could be issued on one
SM when an SM only has 64KB shared memory, and the
K1’s performance drops seriously.

Faced with the above problem, we could enhance the
fusion with flexible fusion ratio. Figure 7 shows one fusion
example for fusing two kernels using a 2:1 ratio. The new
block contains two block of K1 and one block of K2. After

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 6

CD
 k

er
ne

l1
 B

lo
ck

s
CD

 k
er

ne
l2

 B
lo

ck
s

Fig. 7: A fused kernel’s construct example.

supporting the flexible kernel fusion, the resource utilization
on the SM could be maximized.

However, there is still possible that the resources of
one SM could not host all the persistent blocks required
by two component kernels. Since the resources on the SM
have a hard limit, we have to make tradeoffs between two
component kernels. Assuming that K1 and K2 all need 4
persistent blocks, the SM could support the possible 4:2,
3:3, 2:4 fusion ratios, but not 4:4 ratio. Without any prior
knowledge, it is difficult to determine the optimal fusion
ratio of a kernel pair. Static kernel fuser first generates all
possible fused kernel versions, the fused kernel selector
further locates the optimal one (Section 7).

Note that, we have also attempted to fuse three kernels
into a single fused kernel. Experimental results reveal that
this not only fails to bring about performance improvement
but even leads to performance degradation. The reason for
this is that the SM resources hardly host all the persistent
blocks required by two component kernels. If a third kernel
continues to be fused, it will cause severe slowdowns of the
two existing kernels. Hence, in this paper, we only focus on
kernel fusion with two kernels.

6 MODELING FUSED KERNELS

In this section, we propose a duration prediction approach
that could accurately predict the fused kernel’s duration.

6.1 Analyzing The Duration of Fused Kernel
To construct a model for predicting the duration of fused
kernels, we study the fused kernel’s duration through ex-
tensive profiling. Assuming that two kernels K1 and K2 are
fused into kernel Fuse1. Since the block setup of Fuse1 is
static, its duration could only be affected by the computa-
tion workloads of two component kernels. These two parts
correspond to the original computation time of K1 and K2,
and we use Xk1 and Xk2 to represent them. To model the
fused kernel’s duration from two variables, we then define
a metric Load ratio in Equation 1 to simplify the process.
Based on that, our profiling experiments could be divided
into two parts: changing load ratio with fixed K1’s original
time, and changing K1’s original time with fixed load ratio.

3.0

2.5

2.0

1.5

1.0

0.5

N
or

m
al

iz
ed

 D
ur

at
io

n

20018016014012010080604020

 tgemm(TC kernel) - fft(CD kernel)
 sgemm(CD kernel) - fft(CD kernel)

TC kernel last exits CD kernel last extis

Load_ratio = Xk2 / Xk1 (%)

The opportune load ratio:
Two component warps co-run all the time.

Fig. 8: The fused kernel’s duration with changing load
ratios, when the component kernel K1 has fixed workload.

15

10

5

0

Fu
se

 L
at

en
cy

 (m
s)

108642

 30%
 60%
 90%

(a) tgemm duration (ms) (b) sgemm duration (ms)

tgemm-fft pair sgemm-fft pair

8

6

4

2

0

Fu
se

 L
at

en
cy

 (m
s)

2.52.01.51.00.5

 60%
 120%
 240%

Fig. 9: The fused kernel’s duration with fixed load ratios,
when the component kernel K1 has changing original time.

Load ratio = Xk2 / Xk1 (1)

For the first experiment, we fix the K1’s workload, i.e,
with static Xk1, and model the fused kernel’s duration
with different workloads of the K2, i,e, a changing Xk2.
Figure 8 shows the fused kernel’s duration of the tgemm-
fft and sgemm-fft pairs. tgemm and sgemm are K1, and fft is
K2. tgemm uses Tensor Core. sgemm and fft use CUDA Core.
In the figure, the x-axis is the load ratio, and the y-axis is
the duration. From the figure, the duration curve fits a two-
stage linear regression model. In particular, there exists an
inflection point before the line exhibits a sharper slope, and
the sharper slope is 1. This means that the duration growth
of the K2 is converted to the duration growth of the fused
kernel after the inflection point.

Therefore, we may divide the duration prediction of a
fused kernel into two stages: the co-running of two kernels
and the solo-running of one kernel. There is an opportune
load ratio that the two kernels always co-run and finish at
the same time. For the duration curve before the inflection
point, the solo-run kernel in the fused kernel becomes the
K1. The smaller slope is decided by the increasing co-
running time of two kernels.

For the second experiment, we fix the load ratio, i.e., with
static Load ratio, and model the fused kernel’s duration
with different workloads of the K1, i.e., a changing Xk1.
We choose several load ratios randomly to show the exper-
imental results better. Figure 9 shows the duration curves
for tgemm-fft and sgemm-fft pair with different load ratios.
Each curve in these two figures corresponds to one fixed
load ratio. The x-axis is the K1’s original time, and the y-
axis is the fused kernel’s duration. As shown in the figure,
the fused kernel’s duration has a linear relationship with the
K1’s original duration while the load ratio is fixed.

Based on the above analysis, we have two observations.
First, the fused kernel’s duration shows a two-stage linear regres-
sion model, if the K1’s original duration is fixed. Second, when

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 7

Tori_tc

computing warp switchingwaitingCD MEM Memory accessTC

(b)
CD kernel

(c)
Fused
kernel

warp 1

warp 0

Timeline

ŏ(a)
TC kernel

TC1 MEM

TC1 MEM

TC2

TC2

MEM

Tco_run

warp 1

warp 0

warp 2

warp 3

TC1 MEM

TC1 MEM

TC2 WAIT

TC2

MEMCD1

CD1 MEM

CD2WAIT

WAIT

ŏ

ŏ

warp 1

warp 0

Timeline

ŏ
MEMCD1

CD1

CD2

MEM CD2
ŏ

Instruction loop

Instruction loop
Tori_cd

Instruction loop

TC1 MEM

TC1 MEM

TC2

TC2

MEM

MEMCD1

CD1

CD2

MEM CD2

TC1 MEM

TC1 MEM

TC2 WAIT

TC2

MEMCD1

CD1 MEM

CD2WAIT

WAIT

ŏ

Fig. 10: The warp execution timelines of different kernels.

the load ratio is fixed, the fused kernel’s duration has a linear
relationship with the K1’s original time.

In addition to the above two observation, we also have
another observation from Figure 8. As shown from the fig-
ure, the normalized fused kernel’s duration is always longer
than the LC kernel yet shorter than the serial execution.
This is attributable to two reasons. Firstly, the two kernels
contend for limited SM resources, which slows down the
execution of the kernels. Secondly, since two kernels prefer
different resources, the parallel execution brings about the
throughput improvement. Since the longer duration may
bring the QoS violations, we have already taken this into
account in our scheduling method (Section 8.3.1).

6.2 The Two-stage Linear Regression Model
We infer the two-stage linear regression model through
warp scheduling. For modern GPUs [33], warps are
switched on the SM to hide the computation gap and the
switching strategy is deterministic [34], [35]. When multiple
warps perform computation alternately, warp switching is
triggered by memory access or synchronization.

Assuming that K1 is TC kernel and K2 is CD kernel,
Figure 10 (a) and (b) show the warp execution timeline
of PTB-based K1 and K2, respectively. These persistent
warps process the original warps’ computation in a loop.
With the deterministic warp switching strategy and the
warps’ instruction loop, PTB-based warp execution exhibits
a repetitive pattern. Recent studies have shown that an LR-
based (linear regression) model can precisely predict the
duration of PTB-based kernels [8], [22], [23].

Though the block of a fused kernel contains two compo-
nent warps, they are scheduled with the same strategy. As
shown in Figure 10(c), TC warps and CD warps run at the
same time as they could not utilize all the resources alone.
Due to memory contention, the execution behaviors of two
component warps are different from original execution.
Nonetheless, while both TC warps and CD warps have
instruction loops, the warp execution of the fused kernel
still exhibits a repetitive pattern when they co-run. Therefore,
LR is applicable for the fused kernel when the two component
warps co-run.

As discussed in Section 6.1, the execution of a fused
kernel can be divided into: the co-run of two component
kernels, and the solo-run of one component kernel. While
both stages could be predicted using LR, the fused kernel’s du-
ration have a linear relationship with one component kernel’s

original duration if the two kernels have static load ratio. This
corresponds to the second observation in Section 6.1.

Meanwhile, the load ratio also determines the duration
of the fused kernel. When a fused kernel has opportune
load ratio, two component warps always co-run, and finish
at the same time. The opportune load ratio corresponds to
the inflection point in Figure 8, and the execution process is
shown in Figure 10(c). When a fused kernel has a smaller
load ratio, the fused kernel has the additional solo-run stage
of K1. The execution process on the left side of Figure 8
has the case (c) as the first stage and the case (a) as the
second stage. When a fused kernel has a larger load ratio,
the fused kernel has the additional solo-run stage of K2. The
execution process on the right side of Figure 8 has the case
(c) as the first stage and the case (b) as the second stage.

To conclude, the performance of the fused kernel can be
predicted using a two-stage linear regression model based on the
two component kernels’ load ratio. This corresponds to the first
observation in Section 6.1. We give the formulaic proof for
the above conclusions in the conference version [36]. Due to
page limitations, we skip this part here.

6.3 Building Duration Models

Based on the above observations, we could predict a fused
kernel’s duration in three steps. (1) we predict the K1 and
K2’s original time using LR models, which are Xk1 and Xk2.
(2) we compute the Load ratio based on Equation 1. (3)
we predict the fused kernel’s duration using the two-stage
linear regression model in Figure 8.

In the step (1), each kernel needs its own LR model. The
input is the block number in non-PTB mode, and the output
is the kernel’s duration, as prior studies [8], [22], [23]. Like
these works, we collect runtime input and corresponding
performance data when these applications are executed
independently. Based on these performance data, we train
its duration prediction model for each kernel.

In the step (3), each fused kernel needs its own two-
stage LR model. For each fused kernel, we collect its dura-
tion in four load ratios: 10%, 20%, 180%, 190%, and build
the initial duration model. Furthermore, we use online co-
running data to update the model parameters. Whenever
the prediction error exceeds 10%, Aker updates the model
using online data. Note that, we always set the GPU to the
highest frequency to ensure that we obtain accurate and
stable experimental results.

7 SEARCHING THE OPTIMAL FUSED KERNEL

As stated in Section 5.4, there may exist multiple fused ker-
nel versions for a kernel pair with different fusion ratios. The
blue line and the red line in Figure 11 show the durations
of two fused kernel versions of the same kernel pair. Each
thread block of Fuse1 contains two persistent blocks of
tgemm and two persistent blocks of fft. Each thread block
of Fuse2 contains three persistent blocks of tgemm and
one persistent block of fft. Since there are different thread
blocks in the kernels, these two lines are not overlapped.

As shown from the figure, the kernel pair prefers dif-
ferent fused kernel versions under different load ratios.
Under these circumstances, an intuitive idea is to choose the

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 8

3.0

2.5

2.0

1.5

1.0

0.5

N
or

m
al

iz
ed

 D
ur

at
io

n

20018016014012010080604020

 tgemm(TC kernel) - fft(CD kernel)

Load_ratio = Xk2 / Xk1 (%)

 Fused kernel1 Fused kernel2

The original kernel used for running
after the opportune load ratio

The opportune load ratio:
Two component warps

co-run all the time.

Fig. 11: The duration of different fused kernel version for
the same kernel pair (tgemm-fft) with changing load ratios.

best-performing kernel version based on the runtime load
ratio. However, such a naive approach brings great runtime
selection overhead and storage overhead.

Faced with this problem, we further obtain two observa-
tions through extensive experiments. First, the makespan re-
duction of the fused kernel version reaches its maximum at
the inflection point. (The makespan reduction is calculated
using two component kernels’ serial execution time and the
fused kernel’s duration.) This is because two component
kernels always co-run with the opportune load ratio. Under
other load ratios, the fused kernel always needs the solo-
run stage after the co-run stage. The solo-run stage could
not bring makespan reduction.

Secondly, since the component kernel may not be able
to launch enough persistent blocks, the solo-run stage of
the fused kernel suffers severe performance degradation.
Specifically, tgemm requires 3 persistent thread blocks to
attain a similar performance of the original kernel, and fft
necessitates 3 persistent thread blocks to achieve a similar
original performance. However, the limited resources on
the SM only support 2 tgemm blocks and 2 fft blocks for
Fuse1. The solo-run stage of the fused kernel could only
utilize 2 tgemm persistent thread blocks or 2 fft persistent
thread blocks to perform the execution. Therefore, the solo-
run stage of the fused kernel suffers from performance
slowdown compared to the original kernel.

Under these circumstances, if a fused kernel always exits
the computation with the opportune load ratio and uses
the original kernel to execute the remaining workload, then
this kernel pair can achieve better makespan reduction. The
red line and the black line in Figure 11 show the execution
time of fused kernel-only and opportune fused kernel plus
original kernel respectively. As shown in the figure, the
fused kernel exiting with the opportune load ratio has better
makespan reduction.

Based on the above two observations, we can locate
the optimal kernel fusion version. Assuming that a fused
kernel always exits the computation with the opportune
load ratio and the original kernel is used for the remaining
workload, the optimal fused kernel version is the one with
maximum makespan reduction at its opportune load ratio.

We further provide proof of the above conclusion. Sup-
pose there are two kernels K1 and K2, and two fused kernel
versions Fuse1 and Fuse2. The execution time of Fuse1
under the opportune load ratio of 1 : X is Y . The execution
time of Fuse2 is N under the opportune load ratio of 1 : M .
The range of X and M is [0,1]. When the runtime load ratio
of K1 and K2 is 1 : R, the duration of Fuse1 is Y +(R−X),

Fig. 12: The PTB implementation enabling kernel split.

and the duration of Fuse2 is N+(R−M). At the same time,
we can calculate that the makespan reduction of Fuse1 at
the opportune load ratio is 1 + X − Y , and the makespan
reduction of Fuse2 at the opportune load ratio is 1+M−N .

Y + R − X > N + R − M

1 + X − Y < 1 + M − N
(2)

Equation 2 shows one possible comparison results. We
find that these two inequalities are completely equivalent.
This means that if a fused kernel achieves better makespan
reduction at its opportune load ratio, it will achieve better
makespan reduction at any load ratio.

Since we obtain the initial two-stage LR model of all
fused kernel versions for a kernel pair in Section 6.3, we
can further calculate their makespan reduction under their
opportune load ratios. Furthermore, we can locate the op-
timal fused kernel version of this kernel pair. Experimental
results in Section 9.6 show that Aker could locate all the
kernel pairs benefiting from the kernel fusion, and search
the fused kernel version with optimal makespan reduction.

8 ONLINE KERNEL SCHEDULING

In this section, we describe the mechanism used to schedule
the kernels of LC services and BE applications.

8.1 End-to-End Latency Breakdown
A query’s duration is the time interval between when the
first kernel is issued and when the last kernel ends. As
shown in Figure 13, Q’s end-to-end latency (TQ) comprises
four parts. They are: (1) the running time of queued kernels
(Tqueue); (2) the running time of the kernels of Q (Tlc), i.e.,
the aggregated time of its TC kernels (Q-TC1, ..., Q-TCn in
Figure 13), and CD kernels (Q-CD1, ..., Q-CDm in Figure 13);
(3) the running time of fused kernels (Tfuse); and (4) the
running time of kernels of BE tasks (Tbe), which could be
selected from the kernels (B-CDi and B-TCj in Figure 13).

8.2 Kernel split implementation
As proved in Section 7, if a fused kernel always exits the
computation with opportune load ratio and the original
kernel is responsible for the remaining workload, the system
throughput will be further improved. This execution process
requires splitting one BE kernel’s into two kernels: one for
kernel fusion and one for original kernel solo-run.

As shown in the Figure 12, the PTB-based kernel
could be added with two parameters start block id and
end block id to support kernel split. Assuming there is a
BE kernel with 1024 blocks and Aker needs to split one BE
kernel K1 into two kernels K1−1 with 256 blocks and K1−2

with 768 blocks, Aker just needs to launch the kernel K

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 9

FUSE1 Q-CD1B-CD1 … Q-CDm Q-TCn

Q-TC1 Q-CD1 Q-CDm Q-TCn…

B-CD1-1

Q-TC1

FUSE1

+
Query Q

B-TC1B-CD2 …

BE Task 0

BE Task 1

B-TC1

Timeline

ReorderReorder

Fusion

Kernel of BE

Fused kernel

Queued kernel

Kernel of QB-CD1-2B-CD1-1 …

TQ Tqos
Tqueue

…

Split

Fig. 13: The online scheduling an LC query Q with Aker.

two times. As for the first kernel launch, start block id is
0 and end block id is 255. As for the second kernel launch,
start block id is 256 and end block id is 1023.

8.3 Scheduling Policy

Aker uses both kernel fusion and kernel reorder to max-
imize the system throughput. The kernel fusion could be
assisted by kernel split to maximize the throughput im-
provement. Figure 13 presents the end-to-end scheduling
procedure of an LC query Q colocated with BE applications.
Let Tqos represents the QoS target of a query Q, and TQ

represents Q’s end-to-end latency. Q’s QoS is satisfied only
when Equation 3 is satisfied.

TQ = Tqueue + Tlc + Tfuse + Tbe ≤ Tqos (3)

The runtime kernel scheduler of Aker decides to perform
kernel reorder or fusion for each LC kernel and BE kernel
based on Equation 3 as follows.

8.3.1 Calculating QoS Headroom
As discussed above, Tqueue is known and cannot be reduced
when the query Q is launched. Aker first predicts the
original solo-run duration of Q (denoted by Tori solo) for
calculating its QoS headroom (denoted by Thr). Tori solo

is known ahead of the execution based on the prediction
models. Thr reveals the free GPU time left for kernels from
BE applications while co-running with Q. When the first
kernel of Q is issued, Thr = Tqos − Tori solo − Tqueue.
Based on Thr, each time a kernel of Q is launched, Aker
iterates over the ready BE kernels to check whether there are
potential opportunities of kernel fusion and kernel reorder.

Suppose the current kernel of Q is a TC kernel and its
predicted duration is Ttc, and there is a ready CD kernel
from BE applications with duration Tcd. The opportune load
ratio requires split CD kernel into two kernels with duration
Tcd−1 and Tcd−2. The CD kernel with duration Tcd−1 is used
for kernel fusion and the CD kernel with duration Tcd−2 is
put back to the kernel queue.

Aker then predicts the duration of the kernel fused
from the two kernels with opportune load ratio (denoted
as Tk fuse). If Equation 4 is satisfied, Aker actually fuses the
two kernels and launches the fused kernel. Equation 4 states
that the two kernels’ fusion could improve the resource
utilization inside the SM, and the fused kernel’s duration
is within the QoS headroom.

Tk fuse − Ttc< Thr (4)

More specifically, the kernel fusion spends Tk fuse − Ttc

to complete the CD kernel, which originally takes Tcd−1.

After the kernel launch, Aker updates Thr to be Thr −
(Tk fuse − Ttc).

If all the ready BE kernels may not be fused with the
current kernel of Q, Aker checks whether a BE kernel can be
launched directly. For a BE kernel with prediction duration
Ttmp, if Ttmp is smaller than Thr , it is launched directly and
Thr reduces by Ttmp. Otherwise, the kernel is not launched.

Note that, if multiple BE applications are active, Aker
fuses the kernels with the highest throughput gain. The
throughput gain can be calculated to be Tgain = Tcd−1 −
(Tk fuse−Ttc). In this equation, Tk fuse−Ttc is the time for
Aker to finish the CD kernel, which has original time Tcd−1.
Aker fuse the kernel of Q with the BE kernel with the largest
Tgain to maximize the system throughput.

Furthermore, if all the kernels from LC service is
launched, Aker also considers the kernel fusion from two
BE applications. As long as the duration of the fused kernel
is within the QoS headroom, the fused kernel is launched to
maximize the system throughput. Also, the fused kernel of
two BE kernels also utilize the kernel split to improve the
system throughput using opportune load ratio.

8.3.2 Multiple active LC queries
It is possible that multiple LC queries are active. In this case,
in order to ensure the QoS of all the LC queries, we choose to
complete the early queries, and only perform kernel reorder
and kernel fusion for the last arrived query. For instance, if
an LC query Qi is still active when Q arrives, the kernels
of Qi must complete the computation first. Otherwise, the
long processing time of Qi may already result in the QoS
violation of Q.

When we calculate the QoS headroom of Q, the GPU
time reserved for Qi’s unexecuted kernels needs to be
subtracted. Therefore, we monitor the remaining GPU time
that each query needs to complete the computation. For a
specific query, such as Qi, we calculate its remaining GPU
time by subtracting the time of its completed kernels from
its predicted overall time (Tlc of Qi).

Suppose there are n active LC queries when Q is
launched. Let Tlc 1, ..., Tlc n represent each query’s remain-
ing GPU time. Equation 5 calculates Q’s QoS headroom
when it is issued. If the Thr of the new query is close to
0, Aker directly launches all the kernels to the GPU.

Thr = Tqos − Tqueue − Tori solo −
n∑

i=1

Tlc i (5)

9 EVALUATION

In this section, we describe the implementation of Aker, and
evaluate it in improving the throughput of BE applications
while ensuring the QoS of LC services.

9.1 Implementation of Aker
To evaluate Aker method, we implement the kernel fuser
and the runtime kernel manager. The kernel fuser first
transforms all original kernels to PTB mode in a source-to-
source way. Second, the kernel fuser generates all possible
fused kernel versions for a kernel pair following Section 5.4.
Then, for each fused kernel version, the adaptive selector
locates the opportune load ratio using only four profiling

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 10

Resnet50 Bert Vgg16 Vgg11 Inception3

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

100

80

60

40

20

0Th
ro

ug
hp

ut
 im

pr
ov

em
en

t
ov

er
 B

ay
m

ax
 (%

) Aker's throughput improvement over Baymax Taker's throughput improvement over Baymax

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

Vit

Fig. 14: The throughput improvement of BE applications at co-location with Aker and Tacker.

TABLE 2: Experimental specifications.

CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

GPU Nvidia RTX Ada6000

Software CUDA Version: 12.6, CUDNN Version: 9.3

LC Services
Resnet50 (batch size: 64), Bert (256), VGG16 (64)

VGG11 (64), Inception3 (64), Vit(48)

BE Apps [11], [28]
cp, cutcp, fft, mrif, mriq, sgemm, stencil, lbm,

hot3d, lava, path, nn

points. Based on that, the selector could find the optimal
fused kernel version for the kernel pair. Lastly, a dynamic-
link library is created for online invocation.

We implement the kernel manager from the scratch. The
manager determines to invoke the original kernels or the
fused kernels through the dynamic libraries. We implement
shared memory-based parameter passing to pass parame-
ters from the original kernels to the fused kernel. When
a user request arrives, we record the current timestamp.
Given that a DNN model comprises hundreds of kernels,
synchronizing the timestamp upon the launch of each kernel
would incur substantial overhead. Hence, we synchronize
the timestamp every 10ms. In the interval between two
synchronizations, we merely schedule the kernel based on
the kernel duration prediction. This enables us to enhance
hardware utilization and avoid QoS violations resulting
from duration prediction errors.

To implement Aker method in the python-based frame-
works like TensorFlow, the fused kernels are compiled into
customized operators through custom-op [37]. At runtime,
Tensorflow invokes the customized or original operators.

9.2 Experiment Setup
Table 2 shows the detailed experimental setup. We use
six commonly used DNN models, Resnet50, Bert, V gg16,
V gg11, Inception3, and V it as LC applications; use twelve
applications from Parboil [11] and Rodinia [28] as BE ap-
plications. The LC applications are generated by the DNN
compiler Rammer [32]. The BE applications are categorized
into computing-prefer (cp, cutcp, fft, mrif , mriq, sgemm,
lava, path) and memory-prefer (stencil, lbm, hot3d, nn).
We use 50ms to be the QoS target, and LC queries arrive in
Poisson distribution [38]. The batch sizes of the LC services
are the maximum available batch sizes under the QoS target.
All the benchmarks in Parboil use CUDA Cores, and LC
applications use both Tensor Cores and CUDA Cores.

The experiments are mainly carried out on a server
equipped with an Nvidia RTX Ada6000 GPU. Aker does

not rely on any particular features of Ada6000 and is easy
to be set up on other GPUs that integrate Tensor Cores. We
also evaluate Aker on an Nvidia V100 GPU in Section 9.9.

9.3 Improving Throughput

In this subsection, we compare Aker with Baymax [6]
and Tacker [36]. Baymax improves GPU utilization while
guaranteeing the QoS by reordering kernels. Tacker also
guarantees the QoS and improves GPU utilization by ker-
nel reorder and kernel fusion. Equation 6 calculates the
throughput improvement [6], [39] of Aker and Tacker com-
pared with Baymax. In the equation, TBaymax, TTacker, and
TAker represent the processing time of BE applications using
Baymax, Tacker, and Aker. The throughput improvements
only include the results from BE applications as ensuring
QoS is sufficient for LC services [6], [39].

Throughput improvementTacker =
TTacker − TBaymax

TBaymax

Throughput improvementAker =
TAker − TBaymax

TBaymax

(6)

Figure 14 presents the throughput improvement of Aker
and Tacker compared with Baymax. From the figure, Aker
achieves an average of 50.1% (and up to 91.6%) improve-
ment over Baymax. Tacker achieves an average of 24.3%
(and up to 47.4%) improvement over Baymax. Tacker and
Aker improve the throughput for all 72 (=6×12) co-location
sets. This is because Tacker and Aker exploit both adaptive
kernel fusion and kernel reorder, which help to explore the
intra-SM parallelism and the idle GPU time. As a compari-
son, Baymax only utilizes the idle cycles with kernel reorder.

Meanwhile, Aker achieves an average of 25.7% (and
up to 74.9%) improvement over Tacker. This is because
Aker further optimizes the kernel fusion. It enables the
maximum makespan reduction when using kernel fusion.
Besides, Aker could exploit the kernel fusion between two
CD kernels, which also brings throughput improvement.

Figure 15 presents the execution traces of LC appli-
cation Resnet50 and two BE applications (sgemm and fft)
with Tacker, which help to clarify the reason why Tacker
performs better than Baymax. In the figure, the two rows
represent the active time of the CUDA core and Tensor
cores, respectively. We use blue bars to represent the co-run
with Tacker. From Figure 15, Tacker successfully exploits
the parallelism from the two types of cores. Aker also has a
similar execution trajectory, which also helps Aker to enjoy
the intra-SM parallelism using kernel fusion.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 11

C
om

pu
te

0 10 20 30 40 50
Timeline

C
om

pu
te

(ms)

Resnet50
 sgemm

Resnet50
 fft

Tensor core CUDA core Fuse

Fig. 15: The active timelines of the two types of cores.

100

80

60

40

20

0

U
sa

g
e

(%
)

cp-fft
cutcp-fftfft-lbm

fft-mriq
fft-sgemm

lbm-mrif
lbm-mriq

mrif-sgemm
fft-stencil

mrif-stencil
hot3d-lava

nn-path

 CUDA Core Utilization
 DRAM Utilization

Fig. 16: The computing core and memory utilization of fused
kernels from two CD kernels.

In addition, Aker also supports kernel fusion between
computing-prefer kernel and memory-prefer kernel, even
though two kernels all use CUDA Core. Figure 16 shows
the hardware utilization after kernel fusion. Comparing
Figure 3 and Figure 16, it is obvious that most fused kernels
achieve the high computing core utilization and high mem-
ory utilization. Experimental results show that all fused ker-
nels achieve an average of 63.8% computing core utilization
and an average of 30.5% memory utilization. Therefore, the
fused kernels improve the overall throughput.

9.4 Guaranteeing QoS

Figure 17 presents the 99%-ile of the LC applications under
Aker and Tacker in the 72 co-location sets. As shown in the
figure, Aker and Tacker ensure the QoS for LC applications
under all the co-locations. This is because Aker and Tacker
determine whether to perform kernel fusion based on the
queries’ QoS headroom in the runtime. If there is a possible
QoS violation, Aker and Tacker launch the kernels of the LC
application directly.

50

40

30

20

La
te

nc
y

(m
s)

70605040302010

 Aker Tacker
QoS target

Fig. 17: The 99%-ile latencies of the LC services in all the 50
co-location cases with Aker and Tacker.

cp cutcp fft lbm mrif mriq sgemm stencil tgemm hot3d lava nn path
Benchmarks

0

1

2

3

4

5

6

7

Pr
ed

ict
io

n
Er

ro
r R

at
e

(%
)

Fig. 18: The duration prediction errors of the PTB kernels.

cp_fft cutcp_fft fft_lbm fft_mriq fft_sgemm fft_stencil lbm_mrif lbm_mriq mrif_sgemm mrif_stencil hot3d_lava nn_path
Benchmarks

0

2

4

6

8

Pr
ed

ict
io

n
Er

ro
r R

at
e

(%
)

Fig. 19: The duration prediction errors of the fused kernels.

Moreover, LC applications in all the co-locations have
different 99%-ile latency, because Aker and Tacker consider
the kernel fusion based on the runtime load. When there is
no opportunity for kernel fusion, Tacker and Aker complete
the execution of the LC application as soon as possible and
use the headroom before the next query to execute the BE
application. In addition, Aker has smaller 99%-ile latency
in all co-locations compared with Tacker. This is because
Aker could support the opportune kernel fusion and Tacker
has to suffer from the solo-run stage of the fused kernel.
Nonetheless, Aker and Tacker all could effectively use the
QoS headroom in all the co-locations to run the BE kernels,
the 99%-ile latencies of the LC applications are satisfied
within the QoS target.

9.5 Accuracy of The Duration Predictor

In this subsection, we evaluate the duration prediction ac-
curacy for fused kernels. As presented in Section 6.1, Aker
first predicts the duration of each kernel before fusing, and
then predicts the duration of the fused kernel based on the
predicted duration of the to-be-fused kernels.

In this experiment, we first investigate the prediction
accuracy of the linear regression models on a single PTB ker-
nel. These LR models accept the basic runtime configuration
(input parameters) of kernels and predict their running time.
Figure 18 shows the prediction error of these single kernels
prediction error. The predicted running time differs from
the actual value by at most 7.3%, and the average prediction
error is less than 2.8%. Therefore, Aker is able to use linear
regression to predict the duration of PTB kernels.

We also evaluate the two-stage LR model’s prediction
accuracy for the fused kernels. The experimental results
about the fused kernel between TC kernel and CD kernel
have been shown in the conference version [36]. In addition,
Aker further supports the kernel fusion between two CD
kernels. Figure 19 presents the prediction accuracy for these
fused kernels. Since Aker enables the opportune kernel
fusion using kernel split, Figure 19 shows the prediction
accuracy for the opportune kernel fusion. As show from the
figure, these models achieve an error rate lower than 8.9%.

The two-stage LR modeling technique is accurate for predict-
ing the duration of fused kernels.

9.6 Different format

While our main experiments are conducted using FP16
format for DNN models, we add one experiment using INT8
format, we investigate the throughput improvement of Aker
and Tacker using INT8 format in this subsection.

Figure 20 shows the corresponding experimental results.
As shown, Aker achieves an average of 51.3% (and up
to 77.4%) improvement over Baymax. Tacker achieves an

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 12

Resnet50 Bert Vit

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

100

80

60

40

20

0Th
ro

ug
hp

ut
 im

pr
ov

em
en

t
ov

er
 B

ay
m

ax
 (%

) Aker's throughput improvement over Baymax Taker's throughput improvement over Baymax

Fig. 20: The throughput improvement of Aker and Tacker
under the INT8 format.

Resnet50 Bert Vit

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

250

200

150

100

50

0Th
ro

ug
hp

ut
 im

pr
ov

em
en

t
ov

er
 B

ay
m

ax
 (%

) Aker's throughput improvement over Baymax
 Taker's throughput improvement over Baymax

Fig. 21: The throughput improvement of Aker and Tacker
under the 30ms QoS target.

average of 17.0% (and up to 33.7%) improvement over
Baymax. Aker and Tacker still attain throughput improve-
ment, because they do not rely on the specific format. The
throughput improvement is rooted in the parallelism of
Tensor Core and CUDA Core and the parallel usage of
computing core and memory bandwidth. Therefore, as long
as there is system throughput using kernel fusion, Aker and
Tacker could improve the system throughput.

9.7 Contrained QoS headroom
In this subsection, we investigate the throughput improve-
ment of Aker and Tacker under a more constrained system.
The QoS targets are set as 30ms. While the QoS headroom
in Sec 9.3 is 16.1ms on average, the QoS headroom for
Resnet50 and V it in this experiment is about 4ms and the
headroom for Bert is 11.2ms.

Figure 21 shows the throughput improvement of Aker
and Tacker compared with Baymax under the 30ms QoS tar-
get. Aker achieves an average of 124.9% (and up to 245.7%)
improvement over Baymax. Tacker achieves an average
of 62.1% (and up to 99.8%) improvement over Baymax.
Aker and Tacker achieve greater throughput improvements,
because Baymax has less throughput gain under strict QoS
conditions. Meanwhile, Aker’s throughput improvement
compared with Tacker is reduced. This is because the limited
QoS headroom prevents Aker benefiting from the kernel
fusion between two BE applications.

9.8 Adapting to Other GPU Generations
Besides RTX Ada6000, Figure 22 shows the throughput
improvement of BE applications with Aker and Tacker on a
V100 GPU [3]. As observed, Aker increases the throughput
of BE applications by 45.7% on average (up to 83.8%), Tacker
increases the throughput of BE applications by 24.9% on
average (up to 44.3%). This demonstrates that Aker and
Tacker could be easily adapted to other GPUs.

Resnet50 Bert Vit

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

100

80

60

40

20

0Th
ro

ug
hp

ut
 im

pr
ov

em
en

t
ov

er
 B

ay
m

ax
 (%

) Aker's throughput improvement over Baymax
 Taker's throughput improvement over Baymax

Fig. 22: Throughput improvement on an Nvidia V100.

Resnet50+Vgg16 Bert+Vgg11 Vit+Inception3

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

cp
-ff
t

cu
tc
p-
fft

fft
-lb
m

fft
-m
riq

fft
-s
ge
m
m

fft
-s
te
nc
il

lb
m
-m
rif

lb
m
-m
riq

m
rif
-s
ge
m
m

m
rif
-s
te
nc
il

ho
t3
d-
la
va

nn
-p
at
h

100

80

60

40

20

0Th
ro

ug
hp

ut
 im

pr
ov

em
en

t
ov

er
 B

ay
m

ax
 (%

) Aker's throughput improvement over Baymax
 Taker's throughput improvement over Baymax

Fig. 23: Throughput improvement co-locating 2 LC tasks.

By comparing Figure 22 and Figure 14, Aker improves
the throughput of BE applications more on RTX Ada6000
than on V100. This is because all DNN models have shorter
completion time, which brings more idle cycles for Bay-
max. As the baseline value becomes larger, the performance
improvement decreases slightly. In addition, we only need
to update the prediction models to deploy Aker on other
GPUs, as kernels show different performance on different
GPUs. No other update is required.

9.9 Co-location of two LC tasks
In this subsection, we investigate the throughput improve-
ment of Aker and Tacker while co-locating 2 LC tasks and 2
BE tasks. Specifically, we halve the load of all DNN models
in Sec 9.3. Figure 23 shows the corresponding experimental
results. As shown, Aker achieves an average of 48.7% (and
up to 90.6%) improvement over Baymax. Tacker achieves
an average of 24.1% (and up to 46.2%) improvement over
Baymax. Aker and Tacker still attain throughput improve-
ment, because they are designed to deal with multiple LC
tasks. Since they are aware of the QoS target of all LC tasks,
they could also utilize kernel fusion to improve the system
throughput while guaranteeing the QoS.

9.10 Overhead
Aker brings slight offline overhead and online overhead. As
for the online scheduling, Aker only considers fusing the
first kernel in each application’s kernel queue each time.
Suppose 10 LC services and 50 BE applications co-run on a
GPU. When making the scheduling decision, Aker picks the
first kernel in the LC kernel queue and checks whether there
is a kernel in BE kernel queues that can be fused with the
picked LC kernel. Therefore, Aker considers 50 kernel pairs
for fusion. This operation takes 1.2 milliseconds. In the same
case, we also measure the overhead of the static scheduling
by forcing Aker not to fuse the kernels. The overhead of the
static scheduling is 0.5 milliseconds on average. Therefore,
the online scheduling overhead of Tacker is acceptable.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 13

Aker’s offline overhead comes from the kernel fusion
process, the optimal kernel search process and the model
training process. For a BE application in Parboil, compiling
a fused kernel and generating the shared library takes 0.9
seconds, and the size of the shared library is 62KB on
average. Meantime, the DNN models contain 206 kernels
on average. In total, there are 21 types of kernels. While
preparing the fused kernels, we generate the 157 fused
kernels and save 22 fused kernels that exhibit throughput
enhancement. We implement the above process in 840 lines
of code.

10 CONCLUSION

Aker uses kernel fusion to maximize the throughput of
BE applications while ensuring the required QoS of LC
services. It is comprised of a static kernel fuser, a duration
predictor for fused kernels, an adaptive fused kernel selector
and an enhanced QoS-aware kernel manager. The kernel
fuser enables the static and flexible fusion for a kernel pair.
The kernel pair could be Tensor Core kernel and CUDA
Core kernel, or computing-prefer CUDA Core kernel and
memory-prefer CUDA Core kernel. After preparing mul-
tiple fused kernel versions for a kernel pair, the duration
predictor precisely predicts the duration of the fused kernels
and the adaptive fused kernel selector locates the optimal
fused kernel version. At runtime, the kernel manager deter-
mines whether to perform the kernel fusion. Aker improves
the throughput of BE applications by 50.1% on average (up
to 91.6%), while ensuring the required QoS target.

ACKNOWLEDGMENT

This work is partially sponsored by the National
Key Research and Development Program of China
(2022YFB4501400) and National Natural Science Foundation
of China (62302302, 62232011, 62022057, 61832006). Quan
Chen is the corresponding author.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[2] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as
a service and its implications for future warehouse scale com-
puters,” in ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA 2015), pp. 27–40.

[3] “Nvidia volta gpu architecture whitepa-
per,” https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf.

[4] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vig-
fusson, and J. Mace, “Serving dnns like clockwork: Performance
predictability from the bottom up,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pp. 443–
462.

[5] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Kr-
ishnamurthy, and R. Sundaram, “Nexus: a gpu cluster engine for
accelerating dnn-based video analysis,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP 2019), pp.
322–337.

[6] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp.
681–696, 2016.

[7] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on gpus,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA 2017), pp. 269–281.

[8] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers,” in Proceed-
ings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
2017), pp. 17–32.

[9] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-
gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine
learning at facebook: A datacenter infrastructure perspective,”
in IEEE International Symposium on High Performance Computer
Architecture (HPCA 2018), pp. 620–629.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR 2016), pp. 770–778.

[11] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput com-
puting,” Center for Reliable and High-Performance Computing, vol.
127, 2012.

[12] “Cuda mps,” https://docs.nvidia.com/deploy/mps/index.html.
[13] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,

“Simultaneous multikernel gpu: Multi-tasking throughput proces-
sors via fine-grained sharing,” in IEEE International Symposium on
High Performance Computer Architecture (HPCA 2016), pp. 358–369.

[14] W. Cui, M. Wei, Q. Chen, X. Tang, J. Leng, L. Li, and M. Guo,
“Ebird: Elastic batch for improving responsiveness and through-
put of deep learning services,” in IEEE 37th International Conference
on Computer Design (ICCD 2019), pp. 497–505.

[15] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient
and fair multi-programming in gpus via effective bandwidth man-
agement,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA 2018), pp. 247–258.

[16] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu
memory system for multi-application execution,” in Proceedings
of the 2015 International Symposium on Memory Systems, 2015, pp.
223–234.

[17] S. R. Punyala, T. Marinakis, A. Komaee, and I. Anagnostopoulos,
“Throughput optimization and resource allocation on gpus under
multi-application execution,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 73–78.

[18] W. Cui, H. Zhao, Q. Chen, N. Zheng, J. Leng, J. Zhao, Z. Song,
T. Ma, Y. Yang, C. Li, and M. Guo, “Enable simultaneous dnn ser-
vices based on deterministic operator overlap and precise latency
prediction,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2021),
pp. 1–15.

[19] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Time-
graph: Gpu scheduling for real-time multi-tasking environments,”
in Proceedings USENIX ATC (ATC 2011), pp. 17–30.

[20] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A
framework for real-time gpu management,” in IEEE 34th Real-Time
Systems Symposium (RTSS 2013), pp. 33–44.

[21] H. Sedighi, D. Gehberger, and R. Glitho, “Workload-aware dy-
namic gpu resource management in component-based applica-
tions,” in 2022 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 2022, pp. 213–220.

[22] X. Zhao, M. Jahre, and L. Eeckhout, “Hsm: A hybrid slowdown
model for multitasking gpus,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2022), pp. 1371–1385.

[23] M. Jahre and L. Eeckhout, “Gdp: Using dataflow properties to
accurately estimate interference-free performance at runtime,” in
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA 2018), pp. 296–309.

[24] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for gpu architectures,” in IEEE 17th international symposium
on high performance computer architecture (ISCA 2011), pp. 382–393.

[25] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learn-
ing,” in IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA 2015), pp. 564–576.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS 14

[26] B. Hanindhito and L. K. John, “Accelerating ml workloads using
gpu tensor cores: The good, the bad, and the ugly,” in Proceed-
ings of the 15th ACM/SPEC International Conference on Performance
Engineering, 2024, pp. 178–189.

[27] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization
and prediction of deep learning workloads in large-scale gpu
datacenters,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–15.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE international symposium on workload
characterization (IISWC). Ieee, 2009, pp. 44–54.

[29] “tensor core example code,” https://github.com/NVIDIA/cuda-
samples/tree/master/Samples/cudaTensorCoreGemm.

[30] “Nvidia cutlass,” https://github.com/NVIDIA/cutlass.

[31] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persis-
tent threads style gpu programming for gpgpu workloads,” in
Innovative Parallel Computing-Foundations & Applications of GPU,
Manycore, and Heterogeneous Systems (INPAR 2012), pp. 1–14.

[32] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang,
L. Zhang, and L. Zhou, “Rammer: Enabling holistic deep learning
compiler optimizations with rtasks,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2020), pp.
881–897.

[33] “Nvidia nsight compute,” https://docs.nvidia.com/nsight-
compute/ProfilingGuide/index.html.

[34] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving gpgpu resource utilization through alternative thread
block scheduling,” in IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA 2014), pp. 260–271.

[35] M. Awatramani, X. Zhu, J. Zambreno, and D. Rover, “Phase aware
warp scheduling: Mitigating effects of phase behavior in gpgpu
applications,” in International Conference on Parallel Architecture and
Compilation (PACT 2015), pp. 1–12.

[36] H. Zhao, W. Cui, Q. Chen, Y. Zhang, Y. Lu, C. Li, J. Leng, and
M. Guo, “Tacker: Tensor-cuda core kernel fusion for improving
the gpu utilization while ensuring qos,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2022, pp. 800–813.

[37] “Tensorflow create customized ops,”
https://www.tensorflow.org/guide/create op.

[38] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling,
C.-J. Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou
et al., “Mlperf inference benchmark,” in ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA 2020), pp.
446–459.

[39] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse
scale computers,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 3, pp. 607–618, 2013.

Han Zhao is an assistant professor in the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His re-
search interests include high performance com-
puting and resource management of accelera-
tors in datacenters. He got his Ph.D. degree at
June 2022 from the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, China.

Junxiao Deng received his B.Sc. degree from
Huazhong University of Science and Technol-
ogy, China. He is currently an Ph.D. student in
the field of computer science under supervision
of Prof. Minyi Guo in Department of Computer
Engineering Faculty of Shanghai Jiao Tong Uni-
versity, China. His research interest is resource
management of accelerators in datacenters.

Weihao Cui is an assistant professor in the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His re-
search interests include machine learning sys-
tem and runtime system in datacenters. He got
his Ph.D. degree at June 2023 from the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, China.

Quan Chen is a professor in the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China. His research inter-
ests include High performance computing, Task
Scheduling in various architectures, Resource
management in Datacenter. He got his Ph.D.
degree at June 2014 from the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China.

Youtao Zhang is a Professor of Computer Sci-
ence, University of Pittsburgh, Pittsburgh, USA.
He received the Ph.D. degree in computer sci-
ence from the University of Arizona in 2002. His
current research interests include computer ar-
chitecture and memory systems, and hardware-
assisted AI/ML. Prof. Zhang was the recipient
of the U.S. National Science Foundation Career
Award in 2005. He is a member of ACM/IEEE.

Deze Zeng Deze Zeng received his Ph.D. and
M.S. degrees in computer science from Univer-
sity of Aizu, Aizu-Wakamatsu, Japan, in 2013
and 2009, respectively. He is currently a profes-
sor in School of Computer Science, China Uni-
versity of Geosciences, Wuhan, China. His cur-
rent research interests include: network function
virtualization, cloud computing, software-defined
networking, data center networking.

Minyi Guo received the Ph.D. degree in com-
puter science from the University of Tsukuba,
Japan. He is currently Zhiyuan Chair profes-
sor and head of the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, China. His present research inter-
ests include parallel/distributed computing, com-
piler optimizations, embedded systems, perva-
sive computing, big data and cloud computing.
Prof. Guo is an IEEE Fellow and CCF Fellow.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3477995

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 16,2024 at 04:32:55 UTC from IEEE Xplore. Restrictions apply.

