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Abstract—While deep neural network (DNN) models are
mainly trained using GPUs, many companies and research
institutions build shared GPU clusters. These clusters host DNN
training jobs, DNN inference jobs, and CPU jobs (jobs in
traditional areas). DNN training jobs require GPU for main
computation and CPU for auxiliary computation. Some DNN
inference jobs could rely solely on CPU, while others must utilize
both CPU and GPU. Our investigation demonstrates that the
number of cores allocated to a training job significantly impacts
its performance, and that DNN inference jobs can make use of
the limited CPU cores on the GPU nodes. To accomplish this,
we characterize representative deep learning models in terms of
their CPU core requirements for their training jobs and inference
jobs, and investigate their sensitivity to other CPU-side resource
contention. Based on the characterization, we propose SODA,
a scheduling system comprised of an adaptive CPU allocator, a
multi-array job scheduler, a hardware-aware inference job placer,
and a real-time contention eliminator. The experimental results
indicate that SODA increases GPU utilization by an average of
19.9%, while maintaining the quality of service target for all
DNN inference jobs and the queuing performance of CPU jobs.

Index Terms—DNN training, DNN inference, schedule.

1. INTRODUCTION

HE training of DNN models [1], [2], [3] is well-known

to be complex and time-consuming. To resolve this chal-
lenge, a growing number of businesses establish GPU clusters
and share them across multiple departments to amortize the
expense. This leads to the emergence of the multi-tenant GPU
cluster, as shown in Fig. 1. In the cluster, GPU nodes provide
both GPU and CPU resources. The jobs could then be catego-
rized as GPU jobs and CPU jobs. GPU jobs require both GPU
and CPU resources, whereas CPU jobs demand CPU resources
solely.
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Specifically, GPU jobs are mainly DNN jobs, including DNN
training jobs and DNN inference jobs. DNN training jobs con-
duct forward and backward computations over many iterations.
They involve frequent CPU-GPU interactions. DNN inference
jobs serve user queries. They are launched and terminated based
on the query load [4], [5]. Since inference jobs only require
forward computation, some models could rely solely on CPU
[6] while others need both CPU and GPU [7], [8]. As a result,
this multi-tenant GPU cluster represents a new private cloud
paradigm. This new paradigm requires a detailed study of work-
load characteristics, resource utilization, and optimization.

There have been several studies that focus on the characteri-
zation and scheduling of DNN training jobs, such as Microsoft’s
[9] and Google’s [10]. Jeon et al. [9] pay more attention to DNN
training jobs’ GPU affinity, error, and queuing time. It improves
the training job’s performance by maximizing the GPU affinity.
KELP [10] demonstrates that 16% of nodes in Google’s cluster
have peak bandwidth more than 70% of available bandwidth. It
proposes better memory bandwidth allocation when colocating
DNN training jobs and CPU jobs. Although these two works
consider GPU affinity and bandwidth contention, they overlook
the DNN model’s CPU requirement. The CPU core allocation
greatly impacts the training job’s performance. Previous works’
naive CPU allocation results in poor GPU utilization and low
throughput. Worse, they do not explore all the possible resource
interference, and do not consider the possibility of using CPU
cores on GPU nodes for DNN inference jobs.

In this work, we conduct a detailed investigation of the DNN
job’s resource requirements and sensitivity to multiple resource
contention on a production-scale GPU cluster. Four artificial in-
telligence startup companies and one research institution share
this cluster. Three key findings emerge from the investigation.
First, there are more than 30,000 DNN training jobs over one
month. A large number of training jobs apply for one core
or two cores, and a considerable number of training jobs ap-
ply for over ten cores. Regardless of the notable application
mode, our analysis reveals that DNN training jobs have different
needs for the cores to achieve the best performance. The CPU
cores significantly impact the DNN training job’s performance
(Section IV).

Second, the widely-used scheduling algorithms, such as
FIFO [11] and DRF [12], schedule the CPU jobs and GPU
jobs uniformly. Naive resource allocation brings the GPU
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fragmentation due to the insufficient CPU core on the GPU
nodes. Additionally, GPU jobs that apply to one or two GPUs
may result in GPU fragmentation for the GPU jobs applying to
four or more GPUs. These two fragmentation cases contribute
to the long queuing time of GPU jobs.

Third, DNN inference jobs all rely on GPU for computation.
When the query load is low at night, some DNN inference jobs
also need to reside on the GPU. Existing scheduling systems
do not perceive the possibility of using CPU cores on GPU
nodes to serve inference jobs. While the user queries exhibit
a diurnal pattern [13], the few user queries at night mean low
GPU utilization.

The three findings motivate us to propose SODA, a job
scheduling system that improves cluster utilization by adap-
tive resource management. SODA targets the multi-tenant GPU
cluster, which colocates DNN jobs and CPU jobs. Four chal-
lenges have to be resolved in SODA. 1) The best-fit number of
CPU cores required for DNN training jobs varies. SODA must
determine which is the ideal one at runtime. 2) Existing schedul-
ing algorithms’ unified job scheduling brings many resource
contention. SODA must first resolve the GPU fragmentation
produced by these contentions, then eliminate the performance
degradation of DNN jobs. 3) It is unknown whether the DNN
inference job could use the CPU cores on GPU nodes. SODA
needs to explore the possibility of using the limited CPU re-
sources on GPU nodes and coordinate the usage of GPU and
CPU at runtime. 4) the CPU-side computation of DNN training
jobs contends for the shared resources (e.g., last-level cache and
memory bandwidth), and the contention may result in severe
performance degradation. SODA has to be able to monitor the
contention on shared resources and schedule the training jobs
accordingly to avoid serious contention.

To be more specific, SODA consists of an adaptive CPU allo-
cator, a multi-array job scheduler, a hardware-aware inference
job placer, and a real-time contention eliminator. The adaptive
CPU allocator finds the best-fit CPU core number for a DNN
training job. Based on the model type information, the alloca-
tor finds the optimal CPU number in less than four attempts.
The multi-array job scheduler differentiates between CPU and
GPU jobs and schedules them accordingly. Additionally, the
scheduler divides the CPU resources into multiple arrays, each
corresponding to one job array. When many jobs in one job
array are queued and the other job array is idle, it could pre-
empt some resources accordingly. The inference job placer can
identify the possibility of using the CPU cores on GPU nodes
to serve the inference job. It coordinates the use of CPU and
GPU in the runtime to reduce the unnecessary GPU occupation.
The contention eliminator monitors the bandwidth used by each
CPU job. When a CPU job’s bandwidth utilization surpasses a
specified threshold, the eliminator throttles its bandwidth usage
to avoid performance impact on GPU jobs.

3459

This paper makes the following main contributions:

« Comprehensive analysis of CPU-side resource require-
ments of DNN training jobs. The in-depth analysis
enables the design of the SODA for maximizing the per-
formance of DNN training jobs.

o The design of an adaptive CPU allocation algorithm.
It identifies the best-fit CPU core number that should be
allocated to a DNN training job.

o The design of a multi-array job scheduling policy.
Based on the CPU requirements of DNN jobs and the
shared resource contention, the multi-array scheduling re-
duces the GPU fragmentation.

o The design of a hardware-aware inference job place-
ment strategy. It identifies the possibility of using the
GPU node’s limited CPU resources for DNN inference
jobs, and coordinates the use of GPU and CPU at runtime.

Experimental results based on real-system job trace show

that SODA improves the GPU utilization by 19.9%, while all
the DNN inference jobs could provide the service within the
quality-of-service target and the queuing performance of CPU
jobs does not get degradation.

II. RELATED WORK

A. Scheduling Algorithm

Previous research provided a variety of scheduling
algorithms for resolving the cluster job scheduling problem.
DRF [12], a generalization of max-min fairness to multiple
resource types, addressed the problem of fair resource
allocation to users with varying demands. All mainstream job
scheduling frameworks, such as Yarn [14] and Mesos [15],
involve it as a scheduling option. Choosy [16] is an extension
of max-min fairness that addressed the problem of max-min
fairness under constraint conditions. Delay scheduling [17]
is a straightforward approach in which, when the scheduled
job is unable to launch a local task, it waits a brief period of
time, allowing other jobs to start tasks instead. This method
is also utilized and adapted to improve throughput in many
job scheduling frameworks. These works are orthogonal to
ours, as ours focuses on the design of the cluster’s scheduling
system rather than the scheduling method.

B. Scheduling System

Numerous research works [13], [18], [19], [20], [21] studied
the scheduling problem in a variety of scenarios. Gandiva
[22] analyzed the application’s characteristics by investigating
the application’s training characteristics and determining the
optimal hyper-parameter setting for the Auto-ML scenario.
Kelp [10] sought to regulate memory bandwidth allocation
on the CPU side, hence lowering associated interference and
increasing the cluster’s scheduling efficiency. Optimus [18]
reduced training time by utilizing online performance models
to determine the optimal resource configuration. Baymax [13]
and Prophet [19] utilized multitasking to maximize the usage
of the cluster for pure GPU workloads. Since these efforts
are targeted at certain scenarios, they are inappropriate for
multi-tenant GPU clusters.
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Fig. 2.

Many works focus on efficient array management to optimize
cluster scheduling. Both Yarn [14] and Borg [23] support multi-
array scheduling. The central scheduler could adjust the array’s
resource share based on the job load. Besides, Mercury [24] and
Apollo [25] assign each array a scheduler, which brings better
independence and scalability. However, these works’ resource
partition is at the granularity of nodes. Therefore, they also
suffer from the same resource contention as our baseline system
when DNN jobs and CPU jobs are in the same scheduling array.
If two jobs are in different arrays, the CPU cores on GPU nodes
will be wasted. Furthermore, since they are unaware of DNN
jobs’ resource requirements, they cannot optimize the resource
management in the GPU cluster.

III. MOTIVATION

In this section, we first present our findings based on the
comprehensive analysis of a production-scale GPU cluster. The
cluster has two main problems: low resource utilization and
long job queuing time. Then, we locate the root causes behind
the cluster’s problems.

A. Real-World GPU Cluster Investigation

We conduct our investigation on a real-world multi-tenant
GPU cluster (A GPU cluster from AlSpeech Co., Ltd.). The
cluster consists of around 80 multi-GPU servers (mainly
1080Ti). Each server has two sockets and is primarily powered
by Intel Xeon Gold 6132 CPUs with 14 cores. Four artificial in-
telligence startup companies and one research institution share
this cluster. These companies specialize in automatic speech
recognition [26], natural language processing (NLP) [2], and
computer vision (CV) [1].

The cluster is managed by a centralized job scheduling sys-
tem, SLURM [27], which schedules jobs from different groups
using FIFO [11]. Each job can request a specific number of
CPUs and GPUs. All GPU jobs on this cluster are DNN
jobs. CPU jobs are traditional machine learning jobs and
data processing jobs. We collect the cluster’s CPU/GPU usage
characteristics and job information over a week, which leads to
a contradicting observation.

Resource Usage: The resource usage includes two metrics:
active rate and utilization rate. The active CPU rate is defined
in Equation (1) as the ratio of actively using CPUs to the total
number of CPUs. The utilization rate of an active CPU reflects
how much time it spends doing actual work and is collected by
the operating system. We calculate the cluster’s CPU utilization

The CPU and GPU utilization trend of the cluster through one week.
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Fig. 3. Information of DNN training jobs.

rate as the average across all active CPUs. The GPU-related
metrics are calculated similarly.

Active CPU Rate
= Number of Active CPUs/Total CPUs (1)

We collect the cluster’s CPU and GPU usage in a week. Fig. 2
shows that the GPU utilization is consistently higher than the
CPU, which can be explained by the high computation require-
ment of training jobs. Besides, the GPU exhibits a relatively
stable active rate, which does not exceed 80% over 90% of the
time. On the other hand, the CPU active rate exhibits a diurnal
pattern and reach 100% in peak times.

Queueing Delay: We now analyze the job queueing delay in
Fig. 3(a). We observe that GPU jobs suffer from longer queuing
time than CPU jobs. About 48.1% of GPU jobs wait for at
least 3 minutes, and 41.3% of GPU jobs wait for more than 10
minutes. However, Fig. 2 shows that the GPU active rate rarely
exceeds 80%, and the CPU active rate only reaches 100% at
limited times. This leads to a contradicting discovery. While
GPU jobs do not fully utilize GPU resources, many jobs wait
for a long time. We then dive into the jobs’ resource application
for the root causes.

B. Root Causes

GPU jobs suffer from queuing because no GPU node could
meet their resource requirement. Since the scheduling system
schedules GPU jobs and CPU jobs uniformly, CPU jobs may
contend the CPU resource on the GPU node with GPU jobs. As
shown in Fig. 2, there is a CPU job burst on Wednesday, and
the CPU active rate easily reaches 100%. Therefore, the CPU
occupation of CPU jobs leads to the GPU fragmentation. The
first reason for GPU jobs’ queuing is the CPU resource
contention introduced by CPU jobs.
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Second, GPU jobs may contend CPU resources with GPU
jobs. We then study the CPU-GPU ratio to check whether GPU
jobs also introduce the CPU resource contention. Fig. 3(b)
shows that 15.3% of GPU jobs request more than 10 CPU
cores, and 76.1% of GPU jobs request 1 CPU or 2 CPUs.
Theoretically, excessive CPU resource allocation leads to in-
sufficient CPU cores of the GPU nodes. These GPU nodes
then cannot accommodate the incoming GPU jobs. Therefore,
GPU jobs suffer from queuing due to the CPU resource
contention between GPU jobs. Furthermore, insufficient
CPU resource allocation causes the slowdown of jobs,
which also aggravates queuing.

Third, there may be GPU resource contention between GPU
jobs with different configurations. For example, when many
jobs apply for 1 GPU or 2 GPUs, naive GPU allocation eas-
ily leads to fragmentation of the GPU nodes. When the jobs
applying for 4 GPUs arrive, these fragmented nodes could not
serve these jobs. Therefore, unified job scheduling leads to the
GPU fragmentation introduced by GPU jobs.

Fourth, there are some unreasonable GPU occupations of
DNN inference jobs. In order to satisfy the quality-of-service
target, DNN inference jobs generally choose GPU resources for
computation. These jobs are launched and terminated due to the
query load. However, we observe that 12 inference jobs always
reside on the GPUs, even though there are few user queries at
night. These twelve inference jobs correspond to twelve user-
facing services on the cluster.

Finally, there are also implicit resource contentions in the
GPU node, such as memory, network, and PCle contention.
These contentions may also bring GPU jobs’ performance
degradation, which further exacerbates GPU jobs’ queuing.

Therefore, we can summarize the four problems that
the GPU clusters encounter. (1) Unreasonable CPU require-
ments of GPU jobs bring the CPU resource contention, which
leads to GPU fragmentation and further GPU jobs’ queuing.
(2) The unified scheduling of CPU jobs and GPU jobs also
brings the CPU contention and GPU fragmentation. (3) Existing
scheduling systems do not perceive the possibility of using CPU
cores on GPU nodes for DNN inference jobs. (4) GPU jobs may
encounter performance degradation due to the implicit resource
contention on the CPU side, which could exacerbate the GPU
jobs’ queuing.

IV. ANALYSIS OF RESOURCE REQUIREMENT

Since this work targets the GPU cluster that GPU jobs are
mainly DNN jobs, we first analyze the CPU-side resource
requirements of mainstream models’ training jobs, and then
explore the possibility of using the GPU node’s CPU cores for
inference jobs.

As for DNN training jobs, we seek to answer three questions.
(1) How does the CPU core number affect the job’s performance
and What is the best-fit CPU number for a training job? (2)
What are the factors that determine the CPU demands of the
DNN training job and how the factors determine its demand?
(3) Is there any other resource contention that impacts the DNN
training job’s performance?
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Fig. 4. The CPU-GPU collaborative process.

As for DNN inference jobs, we seek to answer two questions.
(1) How to determine whether a DNN model’s inference job
could rely on the GPU node’s CPUs? (2) Is there performance
interference between the DNN inference jobs using CPU and
the DNN training jobs using GPU?

A. CPU-GPU Collaborative Process

Before answering these questions, we study the general CPU-
GPU collaborative process for a DNN training job. Fig. 4 shows
the collaborative process training a DNN model on a single
GPU. (1) Read data from disk into memory. (2) Pre-process raw
data to a proper format for the model training. (3) Transfer data
from CPU memory to GPU memory. (4) Compute gradients
using GPU. (5) Update model weights. If multiple GPUs are
used, global synchronization between the GPUs is required after
step 4.

There are two ways to optimize the collaboration process:
parallelization and pipeline. Programmers could parallelize step
1 and step 2 using the framework’s interface or the self imple-
mentation. Additionally, we might refer to steps 1-3 as Stage
1. It supplies data to Stage 2, which is the major computation.
Stage 1 and Stage 2 pipelines could be used to further improve
performance.

Based on the above analysis, we can infer that the CPU
core is important for steps 1, 2, and 5. Since these three steps
run on the CPU side, they require implicit memory resources
such as cache and memory bandwidth. Besides, step 3 relies on
PCle for data transfer, and multiple GPU jobs may contend for
the PCle bandwidth. Therefore, we need to analyze the DNN
training job’s requirements for these resources and the possible
performance interference.

B. DNN Training Job’s CPU Demand

1) Job’s Performance With CPU Core Number: In this
section, we answer the first question about the DNN training
job. Since this part has been fully discussed in our conference
version [36], we do not place the results and analysis due to the
page limitation.

Simply put, we select state-of-the-art DL models to study
how the CPU core number affects the training job’s perfor-
mance. Table I shows the set of representative DNN models,
which target speech recognition, machine translation, question
answering, speech synthesis, and image classification. We col-
lect the DNN training job’s performance under all possible CPU
configurations. Besides, we also collect the job’s average GPU
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TABLE I
REPRESENTATIVE DNN MODELS

Neural Model Scenario Type Dataset

Alexnet [28] CvV CNN ImageNet

VGGI16 [29] CV CNN ImageNet
InceptionV3 [30] CV CNN ImageNet

Resnet-50 [1] CV CNN ImageNet

Bi-att-Flow (BAT) [31] NLP RNN SQUAD [32]

Transformer [2] NLP - WMT16 [33]

Wavenet [26] SPEECH | CNN VCTK [34]
DeepSpeech [3] SPEECH | RNN | Common Voice [35]

utilization. We also use aNbG to denote the training setup of
using a servers and b GPUs.

From this experiment, we can answer the first question of
the DNN training job. The CPU core number affects the DNN
training job’s performance by impacting the CPU-side compu-
tation. The CPU core number affects the job’s performance
like the traditional multithreading job. Therefore, we can
define the best-fit CPU core number of the DNN training job as
the minimum CPU core number to obtain the maximal running
performance. Besides, we also find that the DNN training
job also has the highest GPU utilization at the maximal
training speed.

2) The Best-Fit CPU Number: In this section, we try to an-
swer the second question of the DNN training job. Specifically,
we study the best-fit CPU core number for the studied models
with different configurations and batch sizes (BS). Since this
part have also been fully discussed in our conference version
[36], we do not place the results and analysis due to the page
limitation.

From the conference paper, we can answer the second ques-
tion of the DNN training job. The factors that affect the
job’s CPU core demand mainly include model type, data
preprocessing complexity, model complexity, and pipeline
optimization. Note that, CPU demands of most models are
independent of batch size. This is because computation-
data pipeline are both impacted by batch size.

Although we have found these factors, we cannot directly
utilize these factors for CPU demand prediction. This is because
these factors cannot be quantified. We need to find other meth-
ods to automatically search the best-fit CPU number for a DNN
training job (discussed Section V-B).

C. DNN Training Job’s Implicit Resource Demand

In this section, we try to answer the third question of the
DNN training job. Specifically, we study DNN training job’s
demand for memory bandwidth, network bandwidth, and PCle
bandwidth.

1) Memory Bandwidth: Since this part have also been fully
discussed in our conference version [36], we do not place the
results and analysis due to the page limitation. From the con-
ference paper, we could answer the question about the memory
bandwidth.

We have four findings about the memory bandwidth usage.
(1) When the batch size increases, its bandwidth demand in-
creases slightly. (2) Lower-complexity CV model has a higher
memory bandwidth demand. (3) Both NLP models have low
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TABLE 11
THE NETWORK BANDWIDTH USAGE FOR STUDIED MODELS

Model/Network BW Alexnet Resnet50 Inception3 VGG16
Default BS (%) 67.1 63.4 23.2 26.9
Max BS (%) 59.4 58.8 17.6 16.2

Model BAT Transformer Deepspeech Wavenet
Default BS (%) 17.7 35.7 36.1 8.4
Max BS (%) 15.5 24.2 35.5 7.3

bandwidth requirements. (4) SPEECH models have different
data pre-processing, which leads to different bandwidth usage.

We also have four findings about the memory bandwidth con-
tention. (1) None of the models are sensitive to the solely LLC
contention. (2) While the models are under the 50% bandwidth
pressure, 5 of 8 models already experience a 8.1% slowdown
on average. (3) The models with the 1N4G configuration are
more sensible than the IN1G configuration. (4) Different batch
sizes have similar bandwidth pressure sensitivities.

2) Network Bandwidth:

Network bandwidth usage: The DNN training jobs may
also require the network bandwidth. While the training job is
configured with multiple nodes, it requires the network band-
width for gradient transmission. Table II shows the network
bandwidth usage for the studied models with 2N2G configu-
ration. All models are configured with the default batch size
and max batch size. We have three observations.

First, no models except Alexnet and VGG16 have more than
40% of maximum network bandwidth usage. Second, all the
models with the max batch size have a slight decline in network
bandwidth usage. This is because a larger batch size brings a
longer duration per iteration. Since the model’s computation
and the gradient’s transmission are asynchronous, it has a slight
decline in bandwidth usage. Third, the training job’s network
bandwidth usage is related to the model parameter’s amount
and the computation time per iteration. The greater parameter
amount brings the greater bandwidth usage. The longer com-
putation time brings the smaller network bandwidth usage.

Network bandwidth contention: We also conduct the ex-
periment on the model’s performance degradation under net-
work bandwidth contention. While a CPU job uses more than
80% of the network bandwidth, all models’ performance with
2N2G configuration drops by an average of 31.7%. Therefore,
we also need to ensure the network bandwidth usage for DNN
training jobs.

Besides, it should be noted that each node of the studied
cluster is configured with two sets of network systems: a Gigabit
network and an Infiniband network. The network bandwidth of
the Gigabit network is 1 Gbit/s, and the network bandwidth of
the Infiniband network is 10 Gbit/s. The contention experiments
are conducted using the Infiniband network. DNN training jobs
and CPU jobs share the Infiniband network in the experiment.
Therefore, network bandwidth contention does not always ex-
ists for multi-node DNN training jobs due to two datapaths for
the network.

3) PCle Bandwidth:

PClIe bandwidth usage: Fig. 5 shows the PCle bandwidth
usage for the studied models with the default batch size under
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the IN1G and IN2G configurations. We do not consider the
IN4G case because they does not encounter the PCle con-
tention. We utilize nvidia — sms to collect each model’s read
bandwidth, write bandwidth, and overall bandwidth. Since the
PCle usage data from nwvidia — sms is coarse-grained, we av-
erage the result across multiple times.

As observed, CV models have similar PCle bandwidth usage
because of the same default batch size. SPEECH models have
smaller PCIe bandwidth usage than CV models, for their batch
sizes are generally less than ten. Moreover, NLP models have
the smallest PCle bandwidth usage for their data format requires
little storage. While the CV models’ PCle usage may exceed
50%, other models’ usage does not.

We do not present the experimental result with different
batch sizes because nvidia — smi has unreasonable results.
The results with the maximum batch size show that the model’s
PClIe bandwidth usage exceeds the theoretical PCle bandwidth
limit. This is because the nvidia — sms uses a long interval to
calculate the PCle bandwidth, which means that the bandwidth
data is not strictly real-time.

PCIe bandwidth contention: In this section, we study
the performance degradation introduced by PCle bandwidth
contention. Two co-running DNN training jobs are all under
IN2G configuration. We bind the two jobs to different memory
nodes to isolate the impact of memory bandwidth.

Experimental results show that the noticeable performance
drop exists only when one of the co-located training jobs is
Alexnet or Resnet50. The performance degradation is between
5%-10% (except Transformer co-running with CV models
have 30%). Therefore, co-running DNN training jobs may en-
counter the PCle contention. Despite this, it is hard to model
the performance degradation because of limited and inaccurate
information.

D. Generality on Other GPU Types

Fig. 6 shows the best-fit CPU core number of the studied
models with different configurations under V100 and 2080Ti.
From this figure, we have two conclusions. (1) The best-fit CPU
core number of the same model on different GPUs is different.
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Fig. 7. The memory bandwidth usage for the studied models with different
configurations under V100 and 2080Ti.
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Fig. 8. The normalized performance of all the IN1G/IN2G models under
contention with V100.

The factors that affect the job’s CPU core demand include the
GPU type, the model structure, the CPU core type. (2) The way
that CPU core affects the performance is not related to the GPU
type. The CPU core number affects the job’s performance on
all GPU types like the traditional multithreading job.

Fig. 7 shows the memory bandwidth usage for the studied
models with different configurations under V100 and 2080Ti.
From this figure, we can infer the same conclusions in Section
IV.C.1. First, different models have different bandwidth re-
quirements. Second, when the batch size increases, its memory
bandwidth increases slightly.

Fig. 8 shows the performance degradation under memory
contention with V100. The experimental results with 2080Ti
are similar, which are not shown due to page limitation. From
this figure, we can also infer the same conclusions as Section
IV.C.1. First, no models suffer from the LLC contention. Sec-
ond, while the models are under the 50% bandwidth pressure,
5 of 8 models already experience the performance degradation.
Third, the models with IN2G configuration are more sensible
than 1N1G configuration.

Based on the above experiments, we can get the conclusion
that all the insights obtained in this paper are common to other
GPU types.

E. DNN Inference Job’s CPU Usage

1) DNN Inference Job’s Questions: The GPU cluster may
host multiple user-facing services relying on DNN inference
jobs. The scheduling system on the cluster launches or termi-
nates inference jobs based on each service’s query load. User
queries need the get the inference result within the quality-of-
service target (QoS target), which is generally set as 200 ms.
The studied cluster provides 12 services with DNN models,
and they all rely on Tensorflow-serving [37]. Therefore, these
jobs could be scheduled using CPU or GPU without
modification.
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TABLE III
THE LARGEST BS FOR DIFFERENT MODELS UNDER 16 CPU
CORES
Model [ Alexnet | Resnet50 [ Inception3 | VGGI6
Largest BS [[ 16 | 4 | 2 | 1
Model [ BAT [ Transformer [ Deepspeech | Wavenet
Largest BS H 1 [ 8 [ 0 [ 0
TABLE IV

BANDWIDTH USAGE FOR DIFFERENT MODELS WITH THE
LARGEST BATCH SIZE

Model  [[ Alexnet | Resnet50 | Inception3 | VGGI6
BW (GBi) || 257 | %9 | 270 | 403

Model  [[ BAT [ Transformer | Deepspeech [ Wavenet
BW GBS || 295 | 23 | NA | NA

Since GPU jobs also require CPU cores, DNN inference jobs
cannot use all the CPU resources. Therefore, the first question
about DNN inference jobs is whether the inference job could
satisfy the user query’s Qos target with limited CPU resources.
Based on the analysis in Section IV-B, we choose 12 CPU
cores to represent the CPU cores occupied by GPU jobs. Since
our experimental machine has 28 or 56 CPU cores, we study
whether the inference job could utilize the remaining 16 CPU
cores to serve the user query.

Table IIT shows the largest batch size that the inference job
could provide the service within the QoS target. Six models
could utilize 16 CPU cores to host the DNN inference job, while
the remaining two models cannot. For most models, the DNN
inference job only involves the forward computation so that the
CPU cores could satisfy the demand.

Table IV shows the bandwidth usage for all models with the
batch size in Table III. As observed, none of the models use
more than 60% of the theoretical bandwidth (70GB/s), mostly
about 40%. We also conduct the experiment to co-run DNN
training jobs and DNN inference jobs. Experimental results
show that neither jobs encounter performance degradation due
to memory bandwidth contention.

Therefore, we could answer the DNN inference job’s two
questions. When some DNN inference jobs could utilize limited
CPU cores to provide the service within the QoS target, they
could utilize the CPU cores on the GPU node for computation.
Moreover, there is no performance interference between DNN
training jobs and DNN inference jobs for studied models.

2) DNN Inference Job’s Performance With CPU Number:
Since the DNN inference job may support a large batch size,
the optimal configuration for a DNN model’s inference job
is unknown. Fig. 9 shows the maximum batch size that three
models could support and its bandwidth usage under different
CPU cores.

From this figure, we have two observations. First, the largest
batch size that one model’s inference job could support in-
creases with the CPU core number. For the model with high
complexity, the increase in CPU core does not always lead to
the increase in the batch size. Second, the bandwidth required
for the DNN inference job also has a linear relationship with the
CPU core number. The slope of the bandwidth usage is different
from that of the batch size.
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V. METHODOLOGY OF SODA

In this section, we present SODA that solves the GPU clus-
ter’s four problems. SODA is a job scheduling system that
improves cluster utilization by adaptive resource management.
SODA targets the multi-tenant GPU cluster, which co-locates
DNN jobs and CPU jobs.

A. Overview

Fig. 10 shows the design overview of SODA. SODA consists
of an adaptive CPU allocator, a multi-array job scheduler,
a hardware-aware inference job placer, and a real-time con-
tention eliminator. These four modules solve the GPU cluster’s
four problems, respectively.

Specifically, the CPU allocator determines the best-fit CPU
core number for a DNN training job. The multi-array job sched-
uler manages the resource division and the job scheduling. The
inference job placer determines the computing resource used
by the inference job based on the runtime query load. The
contention eliminator ensures that the performance of DNN
training jobs would not be adversely affected by CPU-side
resource contention. Apart from the above four parts, SODA
periodically updates the job information from all users and
array-level job information in the backend. The information
is helpful for the CPU allocator and job scheduler to make
efficient decisions.

As for DNN training jobs and CPU jobs, SODA schedules a
newly received job J as follows. 1) If .J is a DNN training job,
the CPU allocator searches the best CPU number for J. 2) If J
is a DNN training job, .J is pushed into the GPU job array. If not,
J is pushed into the CPU job array. 3) The job scheduler assigns
J the required resources based on the status of all the nodes.
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4) The contention eliminator on each node keeps monitoring
each job’s memory and network bandwidth usage, and throttles
the bandwidth of a CPU job if it consumes excessive band-
width. 5) When J completes, its resource usage, scheduling
information, and owner information are recorded in a log for
future use.

As for DNN inference jobs, SODA determines the inference
job’s launch and termination based on the query load [7], [8].
While the optimal CPU configuration for one model’s inference
job is profiled offline, SODA determines the inference job’s
resource type at runtime.

B. Adaptive CPU Allocation

For a DNN training job .J, the adaptive CPU allocator deter-
mines its best-fit CPU core number. Though the factors impact-
ing the training job’s CPU demand cannot be quantified, we still
have two observations in Section III. First, a DNN training job’s
GPU utilization and running speed change in a same trend, and
reach the optimal value at the same CPU number. Second, the
CPU core number affects the job’s performance like traditional
multithreading jobs. If the CPU core number exceeds the best-
fit number, the training job’s GPU utilization does not change
or drop slightly.

We design a feedback-based adaptive CPU allocator based
on these two observations. The allocator increases or decreases
the CPU core number allocated to J to check whether more
or fewer cores would result in a higher performance. The CPU
allocator searches the best-fit CPU core number in two steps.
First, the allocator finds a reasonable CPU core number as the
start point. Second, the allocator adjusts the CPU core number
to locate the best-fit CPU core number for optimal performance.

1) Determining Ngiqr+: According to the discussion in Sec-
tion IV-A, models belonging to the same category have similar
pre-processing. We presume that the tenant provided at least
the model’s category, and optionally the following three types
of information: the model weight’s amount, whether to use
pipeline optimization, and data processing complexity between
iterations.

In general, a user tends to submit similar training jobs. Based
on this assumption, Ng;q,¢ for job J is determined based on
the numbers of cores allocated to its owner’s previous job
in the same category of .J. In more detail, we choose the
largest core number to be Ngiqre. If J is the first job sub-
mitted by a tenant, we choose 3 for CV models, 5 for NLP
models, and 5 for SPEECH models based on our investigation
in Section IV-B. In the worst case that the owner of J does
not even offer the category of .J, it is also sufficient to find
a reasonable Ng;,,+ based only on the owner’s historical job
information.

If the owner of J provides further information, the N4+ can
be optimized further in light of the findings in Section IV-B.
To be more specific, if J is implemented with pipeline opti-
mization, the relevant Ng;,,+ is reduced by 1. If J has a large
number of job weights, N4+ 1s reduced by 1. If the processing
complexity between iterations of J is high, Ny 1S increased
by 1.
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Fig. 11. The design of the multi-array job scheduling.

2) Tuning the Core Number: Beginning with Ng;4,1, SODA
tries both larger and smaller core number allocated to J (de-
noted by N,,:), and checks whether they improve J’s per-
formance. The CPU allocator first evaluates the smaller core
number for J. Three scenarios are possible here. 1) If GPU
utilization increases, the allocator decreases Ny until GPU
utilization remains unchanged. 2) If the smaller core number
does not improve the GPU utilization, the allocator increases
Nopt in the other direction. If increasing N,,, improves the
GPU utilization, the allocator keeps increases N, until GPU
utilization remains unchanged. 3) If neither less nor more cores
improve GPU utilization, the best-fit number of cores for J is
discovered. In Section VI-H, we analyze the tuning’s effective-
ness and associated overhead.

3) Generality: Our adaptive CPU allocation method stems
from the iteration-based computation mode of the DNN training
job. If a job also has this iterative-based mode, such as fluid
dynamics computation in the scientific computing, it could also
use the adaptive CPU allocation method for the best-fit CPU
core number. On the contrary, if a job does not have iterative
computations, such as one-shot computation, then this method
is not suitable.

C. Multi-Array Job Scheduling

Fig. 11 illustrates our multi-array approach. On the one hand,
we divide the cluster’s job array into the CPU job array and the
GPU job array. The GPU job array is further subdivided into the
1-GPU job array and the 4-GPU job array. On the other hand,
we divide the CPU resources on the cluster into the CPU job’s
CPU resource array and the GPU job’s CPU resource array.
The GPU resources on the cluster are divided into the 1-GPU
resource array and the 4-GPU resource array. The division of
the computing resources is derived from historical statistical
information.

When one job arrives, it is distributed to different job arrays
based on the resource requirement. In most cases, the job only
use the resource in the associated resource array. Besides, if
CPU jobs burst and the GPU job’s CPU resource array is
relatively idle, the multi-array scheduler enables CPU jobs to
preempt the reserved cores in the GPU job’s CPU resource array
(Fig. 11). When a GPU job arrives and requires the preempted
CPU cores, SODA aborts the CPU job and releases the CPU
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cores. The suspended CPU job re-enters the array head, waiting
to be rescheduled again. Benefit from containerization and vir-
tualization (Docker and Kata), job migration is easy to achieve
here.

As for the GPU jobs arrays, the 4-GPU sub-array is for
jobs that apply for 4 GPUs and more, while the 1-GPU array
serves jobs that require less than 4 GPUs. Similarly, when the
resources in the 4-GPU array are all used, the GPU job in the
array will be allocated to the nodes that fulfill the requirements
in the 1-GPU array. If no suitable node is found, the job queues
for scheduling later. Similarly, if all resources in the 1-GPU
array are consumed, the job tries to preempt resources from the
4-GPU job array. When 4-GPU jobs need to use the resources,
job migration is performed.

If there are multiple GPUs in the cluster, we create their
own GPU array for each of them. This is because the user will
specify the GPU type they need. The scheduler just need to
make the scheduling decision based on the GPU type requested
by the user. For each GPU array, SODA uses DRF for job
scheduling.

The multi-array design will result in a limited CPU core
number for CPU jobs. However, this has limited impact on CPU
jobs. This is because most CPU jobs themselves are distributed,
such as data processing tasks. If a distributed CPU job applies
for excessive CPU cores for one node, we could directly adjust
it to the same number with different configurations. Meantime,
if a single-node CPU job applies for excessive CPU cores, we
allocate the maximum CPU core number for it and inform them
of the CPU core number available on one node later. In this case,
the multi-array design will not cause CPU core fragmentation.

D. Hardware-Aware Inference Job Placement

1) Original Service Mode: The GPU cluster may host mul-
tiple user-facing services using DNN models. For example, the
studied cluster provides 12 services. Each service maintains a
service manager, which forwards user queries to corresponding
inference jobs. Meanwhile, the service manager launches or
terminates inference jobs according to the real-time query load.

Specifically, each inference job is a long-running serving
system. The serving system is configured with a time window
timewindow and a max batch size batch,,., [38]. Once the
serving system collects batch,,q, user queries within the time
window, it starts computing immediately. When not enough
queries are collected within the time window, it starts perform-
ing computation with the current batch size. The timeyindow
and batch,, ., are set based on the QoS target, and the overall
duration should be less than the QoS target. Generally, the
computation stage and query collection stage are pipelined.

Since each inference job could serve at most batch,qu
queries each time, the service manager can calculate the max-
imum load load,,, that the service can support based on the
number of inference jobs. If the query load for a period of time
continues to exceed a threshold (for example, 80% of load,42),
the service manager launches a new inference job to increase the
load,, 4, of the service. If the query load exceeds the maximum
load, the service manager directly launches new inference jobs
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to meet their needs. The above service management method
is consistent with the service management method on AWS
Lambda [39].

However, the user queries’ diurnal pattern means few queries
at night [13]. Since the inference jobs must reside on the GPU
for possible coming queries, the GPU occupations at night have
low GPU utilization. These low-utilized GPUs could not serve
DNN training jobs with high utilization.

2) Inference Job Placement: We have three insights in Sec-
tion IV-E. (1) The inference jobs mostly rely on deep learning
frameworks, such as Tensorflow serving [37]. They can be
scheduled using CPU or GPU with no modification. (2) One
inference job could use CPU cores for computation only when
two conditions are met. It could utilize limited CPU cores
to provide the service within the QoS target, and it does not
encounter memory bandwidth contention. (3) The inference
job’s best configuration is the smallest CPU core number that
supports the largest batch size. Based on these three insights,
we design a hardware-aware inference job placement method,
which is divided into online and offline stages. All the inference
jobs serve the queries in the same mode, which all support
dynamic batch size.

In the offline stage, we first use the largest CPU core number
to profile the largest batch size that the inference job could
support. The largest CPU core number comes from the CPU
job’s CPU resource array mentioned in the previous section. If
the batch size is smaller than 1, this service could not use CPU
cores for the inference process. On the contrary, we find the
smallest core number that supports the batch size and its mem-
ory bandwidth usage. Besides, we still profile the maximum
batch size that one GPU could support, just like the traditional
works.

In the online stage, we choose the largest batch size bsy,, that
one GPU could support as the switching point. When the query
load is less than the bsg,,, the placer transforms the inference
job from one GPU job to multiple CPU jobs. As for the CPU job
scheduling, we monitor each node’s memory bandwidth usage
to avoid the contention between training jobs and inference
jobs. When the query load is greater than bsg,,, the placer
submits one GPU job to replace these CPU jobs. Besides, when
many CPU jobs are queuing, and the GPU resource array is idle,
we still choose GPU for the inference job. When some GPU jobs
are queuing and the query load is high, we set the inference job
as the first-priority job among all the jobs.

Furthermore, we enable the inference job to preempt the
resources from the DNN training jobs. If there are not enough
resources when the inference job is submitted. SODA enables
the inference job to preempt the resources from DNN train-
ing jobs and CPU jobs. SODA chooses the last submitted
job and puts them at the head of the job queue. This is be-
cause jobs submitted earlier are more likely to complete the
computation, which could alleviate the resource crisis in the
cluster.

3) Discussions: Note that, many previous works rely on
offline analysis to build performance models. For example,
several works [38], [40], [41] require great effort on offline
analysis. The work from KAIST [40] need to profile total 1,250
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job pairs, and Abacus [38] needs 2 hour profiling for each job-
pair profiling. For SODA, the job placer only needs to profile the
optimal CPU configuration for each model, which only needs
5 minutes at most. Therefore, the profiling process of SODA is
simple and effective.

The co-location between multiple DNN inference jobs could
also reduce unnecessary GPU usage to some extent. However,
the co-location of DNN inference jobs still needs to occupy
a certain number of GPUs. This is because the co-location is
limited by the GPU memory and query load. For example,
Abacus only co-locates three to four services on one GPU
[38]. Since SODA could utilize CPU resources to serve DNN
inference jobs, it could better reduce unnecessary GPU usage.

We do not focus on the co-location between DNN inference
job and DNN training job in this paper. This is because, this
will seriously affect the performance of DNN training job.
Experimental results show that a DNN training job under co-
location suffers up to 11 x performance degradation compared
to normal queuing for execution. Since another important goal
of this paper is the short queuing and better performance of
DNN training job, we do not focus on the co-location of DNN
inference jobs and DNN training job.

If there are multiple GPUs on the cluster, we first select the
GPU with the least usage. This is because the DNN inference
job will affect the scheduling of other GPU jobs. If the DNN
inference job always uses a specific GPU type, other training
jobs using this GPU type will encounter long queuing time.
Therefore, we choose the most idle GPU array to undertake the
DNN inference job.

E. Real-Time Contention Elimination

Concerning memory bandwidth contention, SODA monitors
the total memory bandwidth usage of each node and the mem-
ory bandwidth of each CPU job on the node using Intel Memory
Bandwidth Monitoring (MBM) technique. If the total memory
bandwidth usage of the node reaches a pre-defined threshold
(75% by default according to the analysis in Section IV.C.1),
the performance of the DNN training jobs degrades due to the
memory bandwidth contention.

In this scenario, the contention eliminator throttles the mem-
ory bandwidth of CPU workloads via the Memory Bandwidth
Allocation (MBA) approach. If the node does not support the
MBA technique that only works on the latest CPU, the con-
tention eliminator reduces the number of cores allocated to the
CPU jobs by half. This method reduces the memory bandwidth
usage of the CPU job and eliminates the performance degra-
dation of the DNN training job due to the memory bandwidth
contention. For the released CPU cores, SODA tries to schedule
new CPU jobs and uses the same method to ensure that the GPU
utilization is not affected.

If the node does not support memory bandwidth monitor,
SODA can detect memory bandwidth contention by monitoring
the GPU utilization of a DNN training job. During offline anal-
ysis, SODA records the stable GPU utilization of the training
job. After the job is scheduled on the cluster, SODA monitors
its GPU utilization. If the GPU utilization drops significantly,
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SODA adjust the memory bandwidth usage of CPU jobs on the
same node.

As for the network bandwidth contention, SODA first filters
the nodes hosting the GPU jobs with the multi-node configura-
tion because these tasks may suffer from network contention.
When there are GPU jobs with multi-node configuration on one
node, SODA uses the Linux command ¢c [42] to control the
network bandwidth usage. Specifically, we configure 75% of
the network bandwidth for GPU jobs, while CPU jobs can only
use 25% (Section IV.C.2). These two values could be adjusted
with one cluster’s specific network bandwidth. If there are two
network systems, we only configure GPU jobs to use the high-
bandwidth network and CPU jobs to use the low-bandwidth
one.

As for PCle bandwidth contention, SODA does not perform
the management for two reasons. First, all the GPU jobs have
the same priority. Second, there are no relative PCle-related
tools to control PCle usage.

Note that, although DNN training jobs suffer from the band-
width contention from CPU jobs, it is hard to locate the per-
formance degradation without the profiling. Based on that,
profiling all the DNN jobs and CPU jobs before scheduling
incurs great overhead. Therefore, we do not consider the DNN
training job’s scheduling based on the bandwidth usage, and
only guarantee their performance by eliminating the contention
from CPU jobs.

VI. EVALUATION OF SODA
A. Experimental Setup

We collected the task trajectory information for one month
from the real-production cluster. There are 105,000 jobs are
submitted during one month, of which 75,000 jobs are CPU
jobs, and 30,000 jobs are GPU jobs. Most of the GPU jobs are
related to the NLP and SPEECH models. 25,000 of the GPU
jobs are DNN training jobs, and the rest are DNN inference
jobs. Moreover, there are also a large number of CPU jobs
for auxiliary tasks and other tasks. The specific experimental
configuration has been explained in Section III, which has 80
nodes and 400 NVIDIA 1080Ti GPUs.

Based on the real-system traces, we compare SODA with
three systems: KELP-FIFO (KELP [10] with First In First
Out), KELP-DRF (KELP with Dominant Resource Fairness),
and CODA (The conference version [36]). KELP improves
the cluster’s resource utilization by eliminating the memory
bandwidth contention between CPU jobs and DNN jobs. KELP-
FIFO schedules the DNN jobs and CPU jobs in the FIFO
manner. KELP-DRF considers GPU the dominant resource and
enforces the fair share of the dominant resource.

B. Improving Resource Utilization

Figs. 12 and 13 show the GPU active rate and the GPU
utilization with KELP-FIFO, KELP-DRF, CODA, and SODA.
As observed from Fig. 12, SODA significantly improves the
GPU utilization compared with KELP-FIFO, KELP-DREF, and
CODA. The GPU utilization of the cluster with KELP-FIFO,
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KELP-DRF, CODA, and SODA is 45.5%, 45.1%, 59.8%, and
65.4%, respectively. SODA improves the GPU utilization of the
GPU cluster by 65.4%-45.5%=19.9%. At the same time, The
GPU active rate of the cluster with KELP-FIFO, KELP-DRF,
CODA, and SODA is 90.2%, 89.7%, 80.3%, and 76.3%. SODA
has the lowest GPU active rate because it could improve the
performance of DNN training jobs and avoid unnecessary GPU
occupation of DNN inference jobs. The low GPU active rate
implies that SODA could serve higher job throughput.

The improved GPU utilization originates from the adaptive
CPU allocation, the hardware-aware inference job placement,
and the real-time contention elimination in SODA. The adaptive
CPU allocator in SODA selects the best-fit CPU number for
each job. It not only avoids the unreasonable CPU requirement
and its induced fragmentation but also optimizes the perfor-
mance of the DNN training jobs. The hardware-aware inference
job placer reduces the unnecessary GPU occupation of the
inference jobs and mitigates the GPU resource contention. The
real-time contention eliminator exempts the GPU jobs from
memory and network contention, which further optimizes the
GPU resource usage.

By comparing the GPU active rate curve of SODA with
the GPU active rate curve of KELP-FIFO in Fig. 12, we can
find that SODA reacts to the job change in advance. This is
because SODA reduces the job queuing time by optimizing job
scheduling and resource allocation. Specifically, SODA reduces

~o~ FIFO_gpu ~#~ FIFO_cpu DRF_gpu
DRF_cpu =@~ CODA_gpu =@~ CODA_cpu
—— SODA_gpu -~ SODA_cpu
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g
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(a) CDF of job queuing time.  (b) CPU/GPU ratio of GPU jobs.

Fig. 15. Information of DNN training jobs.

the GPU fragmentation through multi-array job scheduling and
adaptive CPU allocation. Besides, SODA avoids the unneces-
sary GPU occupation and mitigates the memory and network
contention encountered by the GPU jobs. These experimental
results are shown in later sections.

C. Reducing the Queuing Time

Figs. 15(a) and 14 show the CDF of all the jobs’ job queuing
time and the 99%-ile job queuing time of each user with KELP-
FIFO, KELP-DRF, CODA, and SODA. With KELP-FIFO and
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KELP-DREF, 57.5% and 49.5% of GPU jobs suffer from queuing
time of more than 1 minute, 33.2% and 19.1% of GPU jobs
queue up for more than 1 hour. Besides, 90.5% and 90.6% of
the CPU jobs can get resource allocation within 10 seconds.
With CODA and SODA, 82.2% and 88.2% of GPU jobs can
get resource allocation without queuing, and 93.9% and 91.3%
of CPU jobs can be scheduled to the cluster within 1 minute.

SODA’s short queuing time is due to its optimized CPU
allocation, multi-array scheduling, and inference job placement.
First, the CPU allocation optimization addresses the problem
of excessive CPU application from GPU jobs, hence reduc-
ing GPU fragmentation. Second, SODA mitigates the impact
of bursty CPU jobs through its multi-array design. Third,
hardware-aware inference job placement reduces the unnec-
essary GPU occupation, which mitigates the GPU resource
contention.

As observed from Fig. 14, the queuing time for most users
is longer with KELP-FIFO than with KELP-DRF. KELP-DRF
provides better fairness, users who submit a large number of
jobs have a longer queuing time, waiting for tasks of users
applied for fewer resources. SODA has a significantly shorter
queue time for all users than KELP-FIFO and KELP-DRF.
As previously stated, SODA reduces GPU fragmentation and
increases job performance, which improves system throughput
and optimizing job queuing time. Besides, SODA also ensures
fairness among users since the DRF algorithm is used for
scheduling inside each array. As the figure indicates, users that
submit more tasks experience a longer queueing time.

D. Effectiveness of Tuning CPU Allocation

Fig. 15(b) presents the tuning of the core number allocated
to each DNN training job with SODA. As shown in the figure,
57.1% of the GPU jobs are allocated 1-5 more cores, and 33.6%
of the GPU jobs are allocated 1-20 fewer cores compare with
the number of cores applied by the job owner. This is consistent
with the investigation in Section III: many DNN training jobs
apply for one or two cores for each GPU, and a considerable
percentage of the DNN training jobs request excessive CPU
cores.

Fig. 19 shows the end-to-end latency of representative GPU
jobs (including queuing time and processing time). The left and
right bars reflect the queuing and processing times for each job
using FIFO and SODA, respectively. As illustrated in the figure,
SODA concurrently reduces the queuing and processing times
of the majority of jobs. The queuing time reduction comes from
the improvement of the overall cluster throughput, while the
processing time reduction is due to the adaptive CPU allocator’s
CPU adjustment.

E. QoS and Co-Location Experiments

Fig. 16 shows the 99%-ile latency of the baseline serving
method and the hardware-aware inference job placer. In this
experiment, the QoS target is set as 200ms. We configure each
service with the batch size that have the computation time clos-
ing to 100ms, and set the time window same as the computation
time. For example, the Resnet50 using CPU under batch size 2
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Fig. 17. The GPU utilization of the multi-tenant GPU cluster with KELP-
ABACUS, CODA-ABACUS and SODA.

needs 95.96ms to finish the computation, and the time window
is also set as 95.96ms.

As observed from the figure, the baseline serving method
does not cause any QoS violations at first. This is because
it configures redundant resources in advance to guarantee the
query’s latency. Second, under the high load during the daytime,
the inference job placer has similar 99%-ile latency with base-
line method. Since the inference placer also rely on GPU for
query serving under high load, it has the similar 99%-ile latency
with the baseline method. Third, under the low load at night-
time, the inference job placer brings higher 99%-ile latency.
While GPU could provide better computing power than CPU,
the inference jobs using GPU could get better latency perfor-
mance. Despite this, the job placer does not introduce any QoS
violations.

Fig. 17 presents the GPU utilization of KELP-ABACUS,
CODA-ABACUS and SODA. The first two systems are en-
hanced by the DNN inference jobs co-location from ABACUS
[38]. The GPU utilization of the cluster with KELP-ABACUS,
CODA-ABACUS, and SODA is 48.4%, 64.5%, and 65.4%,
respectively. Compared with CODA-ABACUS, SODA still has
better performance. This is because the co-location of DNN
inference jobs could only partially reduce the unnecessary GPU
occupation. Furthermore, if there are more services on the clus-
ter, SODA will enjoy greater performance advantages.

In addition, the co-location of DNN inference jobs re-
quires great effort on offline analysis, which may take tens
of hours. During this period, the job co-location could not
solve the unnecessary GPU usage. On the contrary, SODA
only needs a few minutes to complete the profiling of DNN
inference job. It supports the resource switching of new services
seamlessly.

FE. Effectiveness of Placing Inference Jobs

Fig. 18 shows the CPU active rate with KELP-FIFO, KELP-
DRF, CODA, and SODA. As observed from Fig. 18, SODA
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Fig. 18. The CPU active rate of the multi-tenant GPU cluster with KELP-FIFO, KELP-DRF, CODA, and SODA.
FFOC TABLE V
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Fig. 19. The end-to-end latencies of representative GPU jobs with FIFO Wavenet [26] 3 about 20
and SODA. DeepSpeech [3] 3 about 30

improves the CPU active rate compared with CODA, and it
has a lower CPU active rate compared with KELP-FIFO and
KELP-DRF. The CPU active rate of the cluster with KELP-
FIFO, KELP-DRF, CODA, and SODA is 52.8%, 54.5%, 35.1%,
and 46.4%, respectively.

The lower CPU active rate compared with KELP-FIFO and
KELP-DRF comes from the optimized CPU allocation of the
DNN training jobs. Although SODA has a lower CPU active
rate, it brings more efficient resource usage. The improved CPU
active rate compared with CODA originates from the hardware-
aware inference job placer, which also brings the improved
GPU utilization. Observed from the figure, the GPU active rate
of SODA drops in the nighttime while the CPU active rate of
SODA increases simultaneously. This demonstrates the effec-
tiveness of inference job placement. It perceives the query load
difference and chooses the best-fit hardware for the inference
jobs.

G. Effectiveness of Eliminating CPU-Side Contention

To determine the effectiveness of SODA’s contention elimi-
nator, we disable it and retest performance. Our experimental
results indicate that when jobs are queued, the average GPU
utilization decreases by 2.2% if the contention eliminator is
disabled. Meanwhile, the queuing jobs double.

The above performance data is reported in the scenario that
only 0.5% of CPU tasks have high memory or network band-
width requirements. If more CPU jobs on the cluster have
higher memory bandwidth requirements, the performance is
worse without the contention eliminator. Since KELP only
focus on the memory bandwidth management, it could not
handle the network bandwidth contention. Besides, SODA uti-
lize simple memory bandwidth interfaces and core throttle to
manage the memory bandwidth contention, and KELP adopts
complicated memory bandwidth division, which brings heavy
overhead.

H. Overhead of Identifying the Core Number

When determining the optimal core number for a DNN train-
ing job, SODA profiles the job’s performance using different
core numbers. Throughout this process, we sample the GPU
utilization for each profiling step that lasts 60 seconds. As illus-
trated in Table V, SODA determines the best-fit core number for
all DNN training jobs in four profiling steps, which needs four
minutes. The table also lists the number of iterations that each
model has been trained during the profiling step. Each model
is trained for between 20 and 170 iterations, which is sufficient
to determine the CPU requirements of jobs. Additionally, we
analyze the runtime distribution of GPU jobs in a week and
discover that 39.6% of DNN training jobs last longer than 2
hours and 68.5% last longer than an hour. It is worth spending
about four minutes to explore the best-fit core number.

The allocator increases or decreases the CPU core number
to check whether more or fewer cores would result in a higher
performance. However, the job launch and context preparation
of the DNN training job also take a long time, which may take
more than 3 minutes. Faced with this problem, we set a large
parallelism at the beginning. After sampling for a period of
time, we use taskset to dynamically adjust the parallelism on
the CPU side. In this way, we can avoid the overhead caused
by the job launch.

I. Generality

Some larger private clusters may have both GPU and CPU
nodes. FIFO scheduling still results in low GPU utilization and
GPU fragmentation for these clusters. In addition to existing
problems, DRF is confronted with additional ones. When GPU
resources are more scarce than CPU resources, a tenant who
submits both CPU and GPU jobs can quickly accumulate a
significant weight. Then its CPU jobs would no longer be sched-
uled. This situation conveys unfairness among users. However,
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SODA’s multi-array scheduling ensures that GPU and CPU jobs
are not affected by each other.

VII. CONCLUSION

A multi-tenant GPU cluster hosts both DNN training jobs and
traditional CPU jobs. We characterize the CPU-side resource
demand and contention of training DNN models in Speech, CV,
and NLP field. Besides, we explore the possibility to utilize the
CPU cores on GPU node for DNN inference jobs. Based on the
analysis, we propose SODA, a scheduling system that improves
the resource utilization of GPU clusters. SODA could find the
just-enough core for DNN training jobs and exempt the CPU-
side resource contention. Meanwhile, SODA could determine
the best-fit resources for DNN inference jobs. Experimental
results show that SODA improves the GPU utilization by more
than 19.9%, while all the DNN inference jobs could provide
the service within the quality-of-service target and the queuing
performance of CPU jobs does not get degradation.
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