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ABSTRACT

Cloud vendors are now providing cloud gaming services
with GPUs. GPUs in cloud gaming experience periods of idle
because not every frame in a game always keeps the GPU
busy for rendering. Previous works temporally co-locate
games with best-effort applications to harvest these idle
cycles. However, these works ignore the spatial sharing of
GPUs, leading to not maximized throughput improvement.
The newly introduced RT (ray tracing) Cores inside GPU
SMs for ray tracing exacerbate the situation.
This paper presents Combo, which efficiently leverages

two-level spatial sharing: intra-SM and inter-SM sharing,
for throughput improvement while guaranteeing the QoS
of rendering games’ frames. Combo is novel in two ways.
First, based on the investigation of programming models for
RT Cores, Combo devises a neat compilation method to con-
vert the kernels that use RT Cores for fine-grained resource
management. We utilize the fine-grained kernel manage-
ment to construct spatial sharing schemes. Second, since
the performance of spatial sharing varies with the actual
co-located kernels, two efficient spatial sharing schemes are
proposed: exact integrated SM sharing and relaxed intra-SM
sharing. In order to maximize the throughput of BE applica-
tions, Combo identifies the best-fit scenarios for these two
schemes by considering runtime rendering load. Our evalua-
tion shows Combo can achieve up to 38.2% (14.0% on average)
throughput improvement compared with the state-of-the-art
temporal-only solution.
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1 INTRODUCTION

The increasing prevalence of cloud gaming has attracted
the attention of researchers. Cloud gaming players only
need a client to receive rendered frames from the cloud
server, enabling more players to enjoy excellent gaming ef-
fects brought by the powerful GPUs. Therefore, cloud games
have become an important workload for cloud providers,
such as Microsoft’s Xbox Remote Play [6], Amazon’s App-
Stream [1] and Nvidia’s Geforce Now [9]. Since mainstream
cloud games have a low utilization on game-oriented GPUs
(e.g., Nvidia RTX 3090 [5]), previous works try to improve
the GPU utilization by co-locating cloud gaming applications
and best-effort applications (BE applications). Pilotfish [37],
for instance, leverages deep learning (DL) training jobs to
harvest the free GPU cycles.
Figure 1 shows the workflow of Pilotfish. In the figure,

game frames are rendered at a deterministic frequency (fps),
thus setting a QoS target of 1/fps for rendering a single
frame. The GPU for gaming (e.g., RTX3090) comprises multi-
ple isomorphic streaming multiprocessors (SMs), and each
SM contains multiple computing units: RT Cores (only for
ray tracing), CUDA Cores (for general purpose) and Tensor
Cores (dedicated for matrix-multiplication). Ray tracing is
an important visual effect task in gaming. Games commonly
first uses CUDA Cores for traditional rendering, and then
perform ray tracing through RT Cores. The GPU kernels for
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Figure 1: Active timeline of RT/CUDA/Tensor Cores

when PilotFish co-locates a game and BE task.

rendering can finish ahead of the QoS target, leaving idle
intervals between adjacent frames (QoS headroom). Pilotfish
adopts temporal sharing to schedule BE kernels, running
either on CUDA Cores or Tensor Cores, to occupy these free
GPU cycles. However, such a co-location with only temporal
sharing suffers from two problems.

Unexploited intra-SM parallelism. In Figure 1, we ob-
serve that only one of the three cores is activated at the same
time in temporal sharing. Although, these three computing
units reside inside the same SM, our investigations in §2.3
show that without resource contention (thread slots, shared
memory), they can be active simultaneously for different
computations. During ray tracing, temporal sharing only
uses RT Cores, leaving both CUDA Cores and Tensor Cores
idle. Since ray tracing accounts for 36.5% of the total ren-
dering time, the long duration of ray tracing makes things
worse. The temporal sharing scheme is unable to utilize the
intra-SM parallelism for higher throughput.
Under-utilized free GPU cycles. Another observation

from Figure 1 is that many free GPU cycles still cannot be
utilized in temporal sharing. Both the rendering kernels and
the BE kernels such as DL training operators can be compute-
intensive. In this case, some BE kernels’ duration exceeds
the QoS headroom, thus leaving the free GPU cycles un-
utilized. However, we can limit the number of SMs allocated
for the rendering kernels while ensuring the QoS of render-
ing frames in a just-right way. The saved SMs then can be
utilized by BE kernels for throughput improvement. There is
no need to find a BE kernel to fit in the QoS headroom. This
is referred to as inter-SM parallelism.
In this paper, we propose Combo, a high-performance

scheduling system that adaptively exploits the two-level
sharing scheme: intra-SM and inter-SM sharing, to improve
system throughput while ensuring the QoS of cloud games.
Specifically, while ensuring QoS of frames in cloud gaming,
Combo switches the GPU sharing schemes according to the
cloud game’s load mode to maximize the system throughput.

To achieve the above goal, the primary objective of Combo
is to enable spatial sharing of kernels at the level of both intra-
SM and inter-SM. Our key insight is that this can be achieved
by fine-grained resource management of kernels (especially
SM allocations). With SM isolation between different kernels,

games and BE applications use different SMs concurrently
(inter-SM). With scheduling blocks1 from different kernels
to the same SM, different computing cores are activated si-
multaneously (intra-SM). Previous works resolved similar
fine-grained management of CD kernels (running on CUDA
Cores) and TC kernels (running on Tensor Cores) through
Persistent-Thread-Block (PTB) method [23, 32, 39, 40]. How-
ever, it cannot be directly applied to the RT kernels (running
on RT Cores), which use a different programming language
(Optix) [10]. Under these circumstances, Combo identifies a
neat mapping between RT kernels and common GPU kernels.
Through the mapping, the RT kernel is then adapted to the
PTB version for fine-grained management.
With the converted kernels, Combo constructs spatial

sharing schemes with QoS guarantee by analyzing kernel
sharing performance. The experimental results in §4.2 show
that the co-location of CD kernels with either TC kernels
or RT kernels brings an average 18.1% throughput improve-
ment, but only marginal gain for the co-location between
TC and RT kernels. Based on two kernel co-locations with
performance gains, two schemes are drawn up.
The first scheme is exact integrated SM sharing, which

mainly utilizes the parallelism of TC kernels and CD kernels.
Exact integrated SM sharing allocates the best-fit SM number
for rendering kernels to exactly satisfy the QoS requirement.
BE kernels could utilize the remaining SMs for intra-SM par-
allelism. The second one is relaxed intra-SM sharing, which
mainly utilizes the parallelism of RT kernels and CD kernels.
In relaxed intra-SM sharing scheme, only intra-SM sharing
is enabled between RT kernels and CD kernels when Combo
can ensure QoS. Otherwise, the relaxed intra-SM sharing
scheme falls back to the temporal sharing scheme.

Combo employs both these two sharing schemes to achieve
optimal throughput improvement. Another key insight is
that neither of the two schemes could efficiently handle all
situations, although they all could satisfy the frame’s QoS
requirement. Analysis in §5.3 reveals that while exact inte-
grated SM sharing maximizes the performance of BE appli-
cations under a stable rendering workload, relaxed intra-SM
sharing is able to provide better performance when facing
rendering workload fluctuation. Therefore, Combo predicts
the duration of kernels and selects the best-fit sharing scheme
at runtime to co-locate games with BE applications.

Combo further proposes a headroom merging mechanism
based on the observation that each frame does not need to be
rendered immediately. Combo just needs to ensure that the
frame is rendered before the QoS target. This implies that the
free GPU cycles of the adjacent two frames can be merged by
delaying the rendering of the latter frame. Combo enlarges

1GPU kernel is executed as a grid of blocks, with each block being
scheduled onto an SM for computation.
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the headroom for scheduling BE kernels with appropriate
headroom merging. It should be noted that headroom merg-
ing only works for relaxed intra-SM sharing scheme, while
inter-SM sharing scheme has almost no headroom.
We have implemented a prototype of Combo to support

the co-location of games with BE applications such as sci-
entific computing and DL training. We evaluate Combo us-
ing popular games for cloud gaming and widely-used best-
effort applications. Evaluation results proves that Combo can
strictly guarantee the QoS of cloud gaming when co-located
with all BE applications. Combo could improve the through-
put of the co-located BE applications by 14.0% compared
with Pilotfish on average (up to 38.2%).

The key contributions of the paper are as follows:

• We identify the low GPU utilization of the temporal

sharing scheme in the cloud gaming co-location sce-

nario. The root cause is its unawareness of spatial sharing
opportunities: intra-SM and inter-SM parallelism.

• Wepropose the source-to-source compilationmethod

of the RT kernels, which supports resource manage-

ment using the PTB method. Based on this, the RT
kernels could enjoy intra-SM or inter-SM parallelism with
precise scheduling schemes.

• We clarify the best-fit scenarios for the proposed

inter-SM and intra-SM sharing schemes.We then de-
sign a scheduling mechanism that selects the appropriate
mechanism to maximize system throughput based on the
cloud gaming load.

2 BACKGROUND AND MOTIVATION

2.1 Cloud gaming and ray tracing

While traditional games require the installation of rendering
engines locally, cloud games acquire rendered frames from
cloud servers by streaming services. Cloud gaming is advan-
tageous because it eliminates the need to purchase expensive
equipment (GPUs). Consequently, cloud gaming is available
on a broad spectrum of computing devices, including home
computers, tablets, smartphones, and more.
Ray tracing is an important task in rendering scenes. It

enables global illumination, ambient light occlusion, motion
blur, and other effects that bring the rendered scene closer to
reality for cloud gaming users. Achieving such visual effects
leads to a significant drop in the frame rate on traditional
GPUs. To support real-time ray tracing, Nvidia introduced
RT cores in 2018 [13]. RT Cores accelerate Bounding Volume
Hierarchy (BVH) traversal and ray casting functions, which
are the core computation in the ray tracing process. This
results in a 10× faster ray tracing than CUDA Cores. With
the Tensor Cores introduced for DL jobs, the newest GPUs
for cloud gaming are now equipped with three types of cores.

Table 1: Specifications of an Nvidia RTX 3090 GPU.

Resource Value Resource Value
Number of SMs 82 Max Threads per SM 1024
RT Cores per SM 1 Tensor Cores per SM 4

CUDA Cores per SM 128 Shared Memory per SM 64 KB

Table 2: Configurations of Cloud games.

Cloud games Configurations
Served Steel (STEEL) High quality: 2560*1440; FPS: 120

Deliver Us The Moon (DUTM) High quality: 2560*1440; FPS: 120
Quake2(QUAKE) High quality: 2560*1440; FPS: 120

The Ascent(ASCENT) High quality: 2560*1440; FPS: 120

In this paper, we explore the capability of utilizing all
computing units inside the SM for throughput improvement.
Throughout the paper, we use an Nvidia RTX 3090 GPU as
the experimental platform. Table 1 lists the detailed hard-
ware specification of the experimental platform. As indicated
in the table, the RTX 3090 comprises 82 RT Cores distributed
across 82 SMs. Additionally, each SM has 4 Tensor Cores and
128 CUDA Cores. It is not efficient to disregard the compu-
tational ability of Tensor Cores and CUDA Cores entirely,
even if a kernel uses the RT Cores efficiently. Temporal shar-
ing employed by previous works [37] treats the GPU as a
whole without considering the utilization of SMs and the
cores within each SM.

2.2 Problems of Temporal Sharing

To elaborate on the problems of temporal sharing schemes,
we conduct an experiment to study the GPU utilization when
co-locating the kernels of a cloud game and a DNN training
task onto a modern GPU that integrates RT Cores, CUDA
Cores, and Tensor Cores.

We choose Pilotfish [37] to exploit the free GPU cycles by
co-locating cloud game with BE application while ensuring
the QoS of the cloud game. We use four mainstream cloud
games(STEEL [14], DUTM [3], Quake2 [12], Ascent [2]) and
four mainstreamDNN training jobs (Resnet50, VGG16, Incep-
tion, Densenet) in this Experiment. Table 2 lists the detailed
configurations of the cloud games. Each kernel’s duration is
collected to compute the duration of all the RT Core kernels
(RT kernel), all the CUDA Core kernels (CD kernel), and all
the Tensor Core kernels (TC kernel). These three duration
values are normalized to the QoS target.

Computing units are activated separately. Figure 2
shows the duration results of different co-located application
pairs. While the black portion indicates the duration of all
the RT kernels, the grey portion indicates the duration of all
the CD kernels, and the red portion indicates the duration of
all the TC kernels. We stack the results to show the overall
active time of three computing cores. From the figure, we
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Figure 2: The active time of the kernels with Pilotfish.

observe that the computing units’ overall active time does
not exceeds the QoS target. This implies that none of these
cores are active simultaneously.

Some headroom is not harvested by BE jobs. Another
observation from Figure 2 is that there are an obvious gap
between the overall active time and the QoS target for all
co-located application pairs. We further count the ratio of
un-utilized GPU cycles. Experimental results show that the
unused cycles account for an average of 10.6% of the QoS tar-
get and a maximum of 17.4%. There are many under-utilized
GPU cycles under the temporal sharing scheme.
From this experiment, we can conclude that the current

temporal sharing scheme supports only the application that
is occupying the GPU exclusively. This always leaves two
types of the computing resources in an idle state. Mean-
while, the current temporal sharing scheme has many under-
utilized free cycles, which can be attributed to the inability
to find an appropriate kernel to fit in the QoS headroom.

2.3 Opportunities

AGPU comprises multiple isomorphic SMs, and each SM con-
tains RT Cores, CUDA Cores and Tensor Cores. Apart from
the temporal sharing scheme, the spatio sharing schemes
also have the potential to improve the overall throughput.

2.3.1 Intra-SM sharing. We first study the potential of uti-
lizing different computing cores on SM in parallel. We imple-
ment 𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝑇 to be the RT kernel that performs ray tracing
based on the Nvidia sample code [10] using RT Cores. We
implement 𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 to be the CD kernel that uses CUDA
Cores, and we implement 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 to be the TC kernel that
uses Tensor Cores. 𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 and 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 perform pure
computation using registers and do not perform any mem-
ory operations. Each of these three kernels has the same
solo-run computation time, and each occupies half of the
memory resources on the SM.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑇1 +𝑇2 −𝑇𝑐𝑜𝑙𝑜

𝑇1 +𝑇2
(1)

We use the metric 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 to measure the
parallelism between the two kernels. Equation 1 calculates
the makespan when co-running two kernels. In this equa-
tion, 𝑇1, 𝑇2, and 𝑇𝑐𝑜𝑙𝑜 represent the solo-run time of the first

Table 3: The 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 of six possible co-

located kernel pairs.

Co-located kernel pair Makespan Reduction
𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝑇 + 𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 39.87%
𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝑇 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 34.62%
𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 44.12%
𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝑇 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝑇 0%
𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 + 𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 0%
𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 0%

Table 4: The SM ratio required by cloud games on RTX

3090. The fps target is set to 120fps.

Game High Quality Medium Quality Low Quality
Served Steel 100% 68.97% 23.44%

DUTM 100% 73.17% 47.62%
Quake 2 100% 72.29% 44.12%
Ascent 100% 39.73% 25.64%

kernel, the solo-run time of the second kernel, and the total
makespan of completing the two kernels at co-location.
Table 3 shows the results of all kernel co-location pairs.

When two 𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝑇 , two 𝐾𝑒𝑟𝑛𝑒𝑙𝐶𝐷 or two 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝐶 co-run,
the makespan reduction is 0. When different kernels co-run,
the makespan reduction is significant, with the minimum
reduction being 34.62%. This is mainly because the two ker-
nels run in parallel on the different cores on the SM. There is
potential intra-SM parallelism if the co-running kernels use
different processing units. Note that, the makespan reduction
does not reach the theoretical value, which is 50%. This is
because there is still implicit resource contention such as L1
cache and bus bandwidth contention.

2.3.2 Inter-SM sharing. Since a GPU contains multiple SMs,
another intuitive method for application co-location is to
partition SMs between different applications. If the cloud
game could always occupy a certain amount of SM and leave
the remaining SMs to the BE applications, there is no need
to find a kernel to fit in the QoS headroom. This approach
could solve the problem of under-utilized free GPU cycles.

Table 4 shows the SM ratio required by four cloud games,
each with different rendering requirements. The SM ratio
refers to the minimum SM ratio that supports the cloud game
to meet the rendering QoS. As shown in the table, four cloud
games require an average of 70% and a maximum of 90%
SM in all cases. This implies that cloud games could occupy
partial SMs to satisfy the QoS requirement.

2.4 Challenges

Although there is potential to utilize the intra-SM and inter-
SM sharing to solve the problems of temporal sharing. There
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are three main challenges lying behind exploiting these two-
level sharing schemes:

➊ There exists no straightforward method for fine-

grained management of RT kernels. RT kernels use a
different programming language (e.g. Optix). The resource
management like SM allocation goes beyond the scope of
previous works. We have to find a way to control RT kernels
in a fine-grained manner.

➋ There is a large decision space involved in achiev-

ing the theoretical improvement of two-level SM shar-

ing. There are more resource contentions (shared memory,
registers) among actual kernels and they can influence the
actual gain of spatial sharing. We need to efficiently identify
the optimal sharing scheme.

➌ It is challenging to ensure each frame’s QoS under

varying rendering loads with spatial sharing enabled.

It is hard to preempt GPU kernels launched with spatial
sharing, leading to more likely QoS co-location. When facing
ever-changing rendering tasks, the scheduling policy needs
to select the proper sharing scheme to avoid QoS violation.

3 OVERVIEW OF COMBO

To mitigate the above challenges, we propose Combo, a high
performance system that adaptively utilizes intra-SM and
inter-SM sharing schemes to improve overall throughput
while guaranteeing QoS for cloud games. Combo is com-
prised of a PTB adaptor, a duration predictor, and a shar-
ing scheme selector. The adaptor performs source-to-source
compilation to convert kernels to resource-tunable versions
based on Persistent-Thread-Block (PTB) method. Combo ex-
ploits the converted kernels for fine-grained resource man-
agement. The predictor can precisely predict the duration
of individual kernels and kernel co-locations with different
sharing schemes. Based on the predicted rendering time and
runtimeworkload, the scheme selector uses appropriate shar-
ing schemes to launch BE kernels without QoS violation of
the games’ rendering.

In order to squeeze the GPU’s idle resources, two sharing
schemes are adopted in the scheme selector: exact integrated-
SM sharing, and related intra-SM sharing. These two schemes
are used to handle two load modes of cloud gaming respec-
tively, which are stable load mode and dynamic load mode.
In the stable load mode, the rendering time of the frame

is stable for a period of time. The scheme selector chooses
the exact integrated SM sharing scheme for this load mode.
Exact integrated SM sharing allocates the best-fit number
of SMs for rendering kernels of cloud games and leaves the
remaining SMs to the BE applications. The best-fit SM num-
ber is the minimum SMs that satisfy the frame’s rendering
QoS target, obtained from the duration predictor. Meantime,
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Figure 3: The overview of Combo.

BE kernels could utilize the remaining SMs for intra-SM
parallelism between CD and TC kernels.

In the dynamic load mode, the rendering time of the frame
has a great variation. The scheme selector chooses the re-
laxed intra-SM sharing scheme for this load mode. Relaxed
intra-SM sharing mainly utilizes the parallelism between RT
kernels and CD kernels. While the co-running of RT kernels
and CD kernels does not introduce QoS violation, Combo
co-locates the RT kernel and the CD kernel for intra-SM shar-
ing. If the co-running of RT kernels and CD kernels cannot
provide the performance gain, the relaxed intra-SM sharing
falls back to the temporal sharing scheme.

4 RESOURCE MANAGEMENT FOR RT

KERNELS

In this section, we first illustrate the necessity of resource
management for intra-SM sharing. Although the inter-SM
sharing requires adjusting the SM number for kernels, we do
not illustrate its necessity due to its intuitiveness. Second, we
propose the resource management method for RT kernels.
Finally, we add the discussion about the co-location methods
of different kernels.

4.1 Requirements for Intra-SM parallelism

We investigate whether real-world applications can benefit
from the intra-SM parallelism. In this experiment, we choose
4 open-source RT kernels (𝑃𝑎𝑡ℎ𝑡𝑟𝑎𝑐𝑒𝑟 , 𝑐𝑢𝑡𝑜𝑢𝑡𝑠 ,𝑤ℎ𝑖𝑡𝑡𝑒𝑑 , and
𝑚𝑜𝑡𝑖𝑜𝑛𝑏𝑙𝑢𝑟 ) from Nvidia Optix benchmark [10]. We select
one high-performance TC kernel (𝑡𝑧𝑔𝑒𝑚𝑚) from Nvidia [15]
and use eight scientific application kernels from Parboil
benchmark [30] suite as the CD kernel. For the co-location
method, we choose CUDA stream to co-locate the RT kernel
and other kernels.
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Figure 4: The makespan reduction of real-system ap-

plications under arbitrary intra-SM parallelism.

Figure 4 shows the makespan reduction of kernel pairs
at co-location. All the kernels have the same solo-run du-
ration. From the figure, the makespan reduction for most
kernel pairs is around 0, indicating low parallel utilization
of both types of computing cores. Meanwhile, a GPU kernel
generally comprises a grid of blocks, with each block being
scheduled onto a SM for computation. Therefore, no paral-
lelism from the kernel co-location implies that co-located
kernels’ blocks could not reside on the SM simultaneously.

While there is potential parallelism between different com-
puting cores, direct kernel co-running’s inefficiency comes
from the contention for resources on the SM. If one kernel
occupies a large amount of explicit resources (e.g., thread slot
and shared memory), another kernel cannot launch its thread
block on the SM. Based on the above analysis, we could con-
clude that we need to solve the resource contention between
kernels to enjoy the intra-SM parallelism. This necessitates
resource management for RT kernels.

4.2 Resource management for RT kernel

Persistent-Thread-Block method. Since Nvidia GPU’s
grid scheduler launches kernels in an exhaustivemanner [22],
kernel’s blocks are equally dispatched to all SMs immedi-
ately. While GPU kernels generally have a large number of
blocks, they can easily consume up one type of resources on
the SM. Thread slot and shared memory are the two most
highly contested resources.

Many previous works focus on the resource management
of CD kernels and TC kernels [24, 32, 39, 40]. They all adopt
the Persistent-Thread-Block (PTB) method. PTB’s idea is to
treat each issued block as a persistent worker. With PTB,
each persistent block is assigned some tasks that correspond
to the original thread blocks. For each task, the persistent
block needs to re-compute the block index to perform the
computation correctly. A persistent thread block exits when
it completes its assigned tasks. By converting the original ker-
nel into its PTB version, the block number and the resource
usage on each SM can be effectively controlled.

__global__ void render_ori(params){
int idx_x = optixGetLaunchIndex().x;
int idx_y = optixGetLaunchIndex().y;
render_pixel(params, idx_x, idx_y)

}

#define blocksize 128
__global__ void render_ptb(params){

int threadid = blockIdx.x * blocksize +
threadIdx.x;↩→
for (int j = threadid; j < params.width *
params.height; j += SM_NUM * blocksize){↩→

int idx_x = threadid % params.width;
int idx_y = threadid / params.height;
render_pixel(params, idx_x, idx_y)

}
}

Figure 5: An example to construct PTB render kernel.
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Figure 6: Examples of rendering pixels with persistent

thread blocks. The number of SMs is 82 here and each

SM only possesses one persistent thread block. The

x-axis represents the x coordinates of pixels and the

y-axis represents the y coordinates of pixels.

However, the source-to-source compilationmethod for CD
kernels and TC kernels cannot be applied to RT kernels. This
is because RT kernels use a different programming language
𝑂𝑝𝑡𝑖𝑥 . While CD kernels and TC kernels with CUDA rely
on 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 to locate each thread, RT kernels
use the 𝑂𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝐿𝑎𝑢𝑛𝑐ℎ𝐼𝑛𝑑𝑒𝑥 to identify the pixel index.
The 𝑂𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝐿𝑎𝑢𝑛𝑐ℎ𝐼𝑛𝑑𝑒𝑥 represents the coordinate of a
pixel in the rendered image. While previous works only deal
with the block index re-computation, they cannot be directly
applied to the RT kernel.

PTB adaption for RT kernels. Faced with this problem,
we observe that the rendering task could also be treated as a
CUDA-style kernel. We can re-introduce the notion of blocks
and threads into the RT kernel by mapping the coordinate
of a pixel to the thread index. Specifically, we could map
each pixel-process task to the element-wise task, in which
a pixel could map to a thread in the CUDA primitives. As
shown in Figure 5, we could recalculate the pixel coordinate
(𝑖𝑑𝑥𝑥 , 𝑖𝑑𝑥𝑦) with 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .
Figure 5 presents the source-to-source transformation

scheme for converting an RT kernel to the PTB version. After
transforming the RT kernel to a PTB-based kernel version,
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Figure 7: The makespan reduction of PTB real-system

kernels under intra-SM parallelism.

we could adjust the persistent block number for RT kernel.
The persistent thread block can accomplish the workloads
originally executed by multiple blocks with the computation
part wrapped in a for loop. Figure 6 shows how the rendering
tasks of pixels are assigned to the persistent thread blocks.
With the transformed PTB-based RT kernel, we can re-

conduct the co-location experiment. We locate the optimal
persistent block number for each kernel using the method
from previous works [39, 40]. The optimal persistent block
number for one kernel is the minimum block number re-
quired to achieve the same performance as the original ker-
nels. Experimental results show that all RT kernels’ optimal
persistent block number equals to the GPU’s SM number.

Figure 7 shows the makespan reduction of kernel pairs at
co-location after the PTB transformation. It can be observed
that the makespan reduction between RT kernels and CD
kernels is 13.7% on average, 25.9% at maximum. The kernel
co-location with resource management could enjoy the intra-
SM parallelism. However, when RT kernels are co-located
with TC kernels, the makespan reduction is consistently 0 or
even negative. This implies that RT kernels and TC kernels
have severe implicit resource contention besides the thread
slot and shared memory.

SM allocation for RT kernels. Furthermore, it is neces-
sary to support RT kernels’ computing on a partial number
of SMs. Specifically, we adopt the method based on 𝑆𝑀𝑖𝑑

as previous works [24, 26, 32]. At the beginning, we launch
the blocks to all the SMs. Inside the blocks, they will return
immediately if the 𝑆𝑀𝑖𝑑 is not supposed to be used. Figure 8
shows the code transformation method to convert kernels
into the SM-bounding version.

4.3 Discussions about co-location methods.

There are two primary co-location methods, which are ker-
nel fusion and CUDA stream. While kernel fusion provides
stable performance due to its deterministic block sequence,
CUDA stream offers more flexibility without complicated

#define blocksize 128
__global__ void render_sm_bounding(params,

sm_split_num){↩→
if (SM_id >= sm_split_num){

return;
}
int threadid = blockIdx.x * blocksize +
threadIdx.x;↩→
for (int j = threadid; j < params.width *
params.height; j += sm_split_num * blocksize){↩→

int idx_x = threadid % params.width;
int idx_y = threadid / params.height;
render_pixel(params, idx_x, idx_y)

}
}

__global__ void compute_sm_bounding(params,
sm_split_num){↩→
if (SM_id < sm_split_num){

return;
}
int block_id = SM_id - sm_split_num;
int thread_id = threadIdx.x;
for (;block_id < grid_dim; block_id +=
(SM_NUM-sm_split_num)){↩→

compute_kernel(params, block_id, thread_id);
}

}

Figure 8: An example to restrict SM usage of render

kernel and compute kernel for inter-SM sharing.

compilation. In this section, we explain the reasons for not
choosing kernel fusion and instead choosing CUDA stream.

Kernel fusion. Kernel fusion can be used to fuse multiple
kernels that use different hardware resources (e.g., Tensor
Cores and CUDA Cores) into a single kernel with nvcc [8] or
nvrtc [11]. However, developers have to compile RT kernels
with Optix [10] which has its own black-box compiler specif-
ically designed for rendering shaders. After comprehensive
analysis, we observe that Optix lacks the ability to explicitly
access shared memory and cannot compile MMA operations
to utilize Tensor Cores. Thus, RT kernels can neither be fused
with CD kernels nor with TC kernels.

CUDA stream. By deploying workloads with different
resource requirements into different CUDA streams, there
is an opportunity to achieve parallel execution of tasks. As
long as the GPU hardware resources (e.g., threads, shared
memory) are not fully occupied and the remaining resources
are sufficient to accommodate a kernel from another stream,
that kernel can be launched and executed in parallel with
existing kernels. Thus, the CUDA multi-stream mechanism
allows both intra-SM parallelism and inter-SM parallelism.
With Optix retaining the concept of CUDA streams, we

can further exploit spatial multi-tasking by launching ker-
nels from different workloads onto separate CUDA streams.
Specifically, we assign one stream to the render application,
one stream to applications with CUDA kernels, and one
stream to applications with tensor kernels.
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5 SCHEDULINGWITH TWO-LEVEL SM

SHARING

In this section, we discuss how Combo adopts an appropri-
ate scheduling strategy to ensure QoS and improve GPU
throughput when co-locating games and BE applications.

5.1 Constructing Sharing Schemes

In Combo, the principle for constructing the sharing scheme
is to maximize the throughput of BE applications, while en-
suring the QoS of the games. To eliminate the QoS violation
of rendering game frames, we can either precisely control
the duration of rendering kernels through SM-level isolation,
or subtly select kernels that would not violate the rendering
application’s QoS from BE applications. To maximize the
throughput, we can either activate the idle computing units
and squeeze the under-utilized free cycles. With the above
principles in mind, Combo first proposes two spatial shar-
ing schemes. In the two schemes, three CUDA streams are
created and sustained: one for running the games, one for
running the CD kernels of the BE application, and the last
one for running the TC kernels of the BE application.

5.1.1 Exact Integrated SM Sharing. In exact integrated SM
sharing, the GPU is divided into two SM groups, where the
render SM group runs the games and the BE SM group runs
the BE applications, shown in Figure 9. We use an offline
profiling method to determine the optimal SM allocation of
two groups. To maximize the throughput of BE applications,
we minimize the SM number allocated to the render SM
group of the games while ensuring the QoS of each frame.
This co-location approach has a notable characteristic:

as an inter-SM parallelism, the two groups do not share
resources across the SM groups. Therefore, there is no shared
memory or L1 cache contention between the games and the
BE applications, with only L2 cache and DRAM contention.
Meanwhile, as shown in Table 5, the L2 cache and DRAM
throughput of rendering kernels in Optix is relatively low.
This implies that the interference between the two groups
is minimal during co-location. Thus, when determining the

Table 5: The L2 throughput of RT kernels.

PathTracer Cutouts Whitted MotionBlur
L2 throughput 7.92% 9.38% 4.81% 9.4%

DRAM throughput 9.47% 4.79% 6.51% 8.38%

proper SM allocation of the render SM group, we only need
the duration predictor to predict the duration of rendering
kernels, without considering the impact of the BE SM group.

Apart from the inter-SM sharing between the render and
the BE SM group, there also exists intra-SM sharing inside the
BE SM group. As depicted in the right of Figure 9, the CUDA
Cores and Tensor Cores are both activated to maximize the
BE application throughput.

5.1.2 Relaxed Intra-SM Sharing. The second scheduling sche-
me of Combo is the relaxed intra-SM sharing. In this scheme,
we first provision the whole GPU for running CD kernels of
from games. Then we only allow the intra-SM sharing either
for RT kernels and CD kernels from BE tasks, or CD kernels
and TC kernels both from BE tasks. There are some reasons
for resource contention for this design, especially in terms
of the L1 cache and shared memory.

On the RTX3090, the total capacity of L1 cache and shared
memory is 128KB. In the general compute mode, it is allo-
cated as 64KB for L1 cache and 64KB for shared memory.
However, during the execution of the graphics workload, it
is allocated as 64KB for L1 cache, 48KB for shared memory,
and 16KB for the graphics pipeline. If we want to co-run a
compute kernel and an RT kernel, GPU must allocate L1 and
shared memory according to the graphics workload mode.
TC kernels for matrix multiplication typically require more
than 40KB of shared memory, and RT kernels dynamically
allocate at least 8KB of shared memory. This results in signif-
icant interference between TC kernels and RT kernels when
they co-locate. In fact, according to Figure 7, the co-location
of RT kernels and TC kernels leads to marginal or even neg-
ative makespan reduction, indicating that this co-location
pair does not provide a performance improvement. CD ker-
nels in games also consume more than 32KB shared memory.
Therefore, they can not be co-located with TC kernels.

We can eliminate the aforementioned two pairs of co-
location combinations from the combination candidates. This
leaves us with two remaining co-location choices: one is to
co-locate the RT kernel of the games with the CD kernel
of the BE application, and the other is to co-locate the CD
kernel with TC kernel both from the BE applications.
To pick proper kernels to co-run at runtime and ensure

no QoS violation while rendering games’ frames, we subtly
choose kernels from the CUDA stream host queue and the
Tensor stream host queue to launch. First, we would pop a
CD kernel from the CUDA stream host queue and launch it
onto the CUDA stream if it would not violate the QoS of the
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games. Then, we select TC kernels from the Tensor stream
host queue to co-locate them with the CD kernels in the
CUDA stream as shown in Figure 10.

5.2 Comparing Two Spatial Sharing

Schemes

In this subsection, we investigate performance of the two
schemes with an experiment under varying rendering work-
load. We set the QoS target for the game to 16.7ms (60fps). In
Experiment A, the workload of the games is constant, with
a rendering time of 14.8ms per frame, and the BE kernel is
a mriq kernel with a duration of 1.2ms. In Experiment B,
the workload of the game varies. The rendering time fluctu-
ates between 12ms and 16ms per frame while the average
rendering time and the BE kernel duration are the same as
Experiment A. In this dynamic workload scenario, the ex-
act inter-SM strategy requires constantly changing the SM
group allocation to meet the QoS target of the game. We use
an offline profiling method to determine the optimal allo-
cation scheme. However, each time the allocation scheme
is changed, there is a sacrifice of the BE application in that
frame to meet the QoS target. This issue will be further ex-
plained in detail in §5.3.

Under the above experimental configurations, the through-
put of the two schemes is shown in Table 6. It can be ob-
served that exact integrated SM strategy has a significantly
higher throughput than relaxed intra-SM strategy in Exper-
iment A. This is because in the relaxed intra-SM strategy,
the QoS headroom is small, and running the BE kernel twice
per frame would lead to QoS violations. However, sending
only one BE application kernel per frame would waste ap-
proximately 0.6ms of free GPU cycles. In the exact inter-SM
scheme, when the compute kernel is sent to the compute SM
group, it has no effect on the rendering kernels, allowing the
compute SM group to remain occupied continuously, thereby
eliminating GPU free cycles.
In Experiment B, the relaxed intra-SM strategy performs

better. This is because under dynamic workload, the SM
group allocation scheme changes approximately every three

Table 6: The number of executed mriq kernels per

frame under exact integrated SM sharing scheme and

relaxed intra-SM sharing scheme.

stable workload dynamic workload
exact integrated SM 1.45 1
relaxed intra-SM 0.998 1.16

frames. Each time a change occurs, the BE task is blocked
during the frame, resulting in a decrease in throughput.
From these two experiments, we can conclude that the

exact integrated SM strategy is superior under a static ren-
dering workload, while the relaxed intra-SM strategy is more
suitable for a dynamic rendering workload.

5.3 Scheme Switching Strategy

In Section 5.2, we discover that the proposed two schedule
schemes are suitable for different rendering workloads. The
scheme switching logic is: the exact integrated SM strategy
is selected when the rendering workload is static, while the
relaxed intra-SM strategy is selected for a dynamic rendering
workload. The workload state is judged by Equation 3.

𝑠𝑡𝑎𝑡𝑒 =
𝑚𝑎𝑥 (𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒) −𝑚𝑖𝑛(𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒)

𝑎𝑣𝑔(𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒) (2)

𝑤𝑜𝑘𝑙𝑜𝑎𝑑 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠

{
𝑠𝑡𝑎𝑡𝑖𝑐, 𝑠𝑡𝑎𝑡𝑒 < 10%
𝑑𝑦𝑛𝑎𝑚𝑖𝑐, 𝑠𝑡𝑎𝑡𝑒 ≥ 10% (3)

If the parameter 𝑠𝑡𝑎𝑡𝑒 is 9%, the workload is judged as
static and the exact integrated SM strategy is employed, but
the SM allocation scheme still may be adjusted. With the
adjusting comes a problem that can violate the QoS target.
For the sake of simplicity in our discussion, let’s assume

that one SM group runs only the RT kernel while the other
group runs only the TC kernel. As is shown in Figure 11, we
have a GPUwith 82 SMs in total. In the first frame, the render-
ing workload requires 50 SMs allocated to the game to meet
the QoS target. In the second frame, the rendering workload
changes, requiring 60 SMs. Ideally, as shown in Figure 11(a),
both the TC kernel and the RT kernel finish simultaneously
in each frame and everything goes well. However, in practice,
as depicted in Figure 11(b), the TC kernel may finish later
than the RT kernel. At the end of the first frame, the TC
kernel still occupies SMs 51 to 82. This leads to increased
latency for the blocks running on SMs 51 to 62, ultimately
violating the QoS target for that frame. To eliminate this
impact, we propose an optimization strategy, as illustrated
in Figure 11(c). In the second frame, the original version of
the RT kernel is launched. Unlike the SM-bound version,
the original version does not bind each block to a specific
SM. Instead, it launches blocks on any available SM. This
eliminates the issue of increased latency in the SM-bound
version of the kernel.
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tion adjusts in 3 situations. This GPU has 82 SMs.

When the workload of the rendering task transitions from
static to dynamic, the strategy switches from integrated SM
to relaxed intra-SM. In the relaxed intra-SM strategy, the
rt kernel occupies all the SMs, but compute SM group may
still occupy some SMs. This also can lead to an increase in
rendering latency. In this case, we need to send an original
version of the kernel during the frame of the scheme switch.

5.4 Partitioning SM Group

As to the exact integrated SM sharing strategy, the parti-
tioning of SMs has a significant impact on both QoS and
throughput. To achieve the QoS guarantee for the games,
more SMs should be allocated to it. Conversely, to improve
the GPU throughput, more SMs should be allocated to the
BE application. Therefore, the optimal allocation strategy
is to allocate just exactly the required number of SMs to
the game, enabling it to meet the QoS objectives precisely.
This necessitates the prediction of the execution time for the
game’s rendering kernels.
Rendering kernels are consisted of CD kernels and RT

kernels. The execution time prediction formula is shown in
Equation 4, where ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ represents the size of the
render frame, i.e., the number of pixels, 𝑠𝑎𝑚𝑝𝑙𝑒 denotes the
number of ray samples per unit area, 𝑛𝑢𝑚𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 denotes the
number of triangles in the scene, and 𝑎 and 𝑏 are parameters
related to the render kernels. This method exhibits high
accuracy in predicting rendering time, with a maximum
error not exceeding 5.16%.

𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑡𝑖𝑚𝑒𝑟𝑡 + 𝑡𝑖𝑚𝑒𝑐𝑢𝑑𝑎
𝑡𝑖𝑚𝑒𝑟𝑡 = 𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ × 𝑠𝑎𝑚𝑝𝑙𝑒
𝑡𝑖𝑚𝑒𝑐𝑢𝑑𝑎 = 𝑏 × ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ × 𝑛𝑢𝑚𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

(4)

With the observation of low interference and rt kernel
prediction model, we can now decide the number of SMs
allocated to the rendering kernels. The execution time of
the render kernel is inversely proportional to the number of

CD Kernel TC Kernel RT Kernel

1 2 3 1 22 3

QoS Headroom QoS Headroom

Cannot fit in

QoS Headroom

(a) (b)

Figure 12: The timeline of 3 kernels before and after

headroom merge.

SMs used. Therefore, we can use Equation 5 to determine the
number of SMs allocated to the rendering kernels. 𝑆𝑀𝑟𝑒𝑛𝑑𝑒𝑟

is the number of SMs allocated to rendering kernels. All the
information needed can be collected on the host side and
𝑆𝑀𝑟𝑒𝑛𝑑𝑒𝑟 can be calculated before kernel launch.

𝑆𝑀𝑟𝑒𝑛𝑑𝑒𝑟 = 𝑆𝑀𝑡𝑜𝑡𝑎𝑙 ×
𝑄𝑜𝑆 𝑡𝑎𝑟𝑔𝑒𝑡

𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

= 𝑆𝑀𝑡𝑜𝑡𝑎𝑙 ×
1

𝑓 𝑝𝑠 × 𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑆𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑆𝑀𝑡𝑜𝑡𝑎𝑙 − 𝑆𝑀𝑟𝑒𝑛𝑑𝑒𝑟

(5)

5.5 Merging Adjacent Headrooms

Under the relaxed intra-SM scheme, QoS headroom still ex-
ists. If the headroom is too small it can lead to a decrease
in BE task throughput. Combo proposes a headroom merge
method to combine the headroom of consecutive frames into
a larger headroom. The specific approach is to shift the start
time of the second frame’s rendering ( 1

𝑓 𝑝𝑠
− 𝑟𝑒𝑛𝑑𝑒𝑟𝑡𝑖𝑚𝑒)

units later. A larger headroom means more potential parallel
opportunities. As shown in Figure 1, the QoS headroom is
enough for the CD kernel to fit in, but too small for both
TC kernel and CD kernel to fit in. Due to the continuity
of the rendering workload, the next few frame’s rendering
time usually does not change significantly. Therefore, the TC
kernel cannot be launched for several consecutive frames. In
such cases, if a headroom merge is performed, both CD and
TC kernel can be fitted into the larger headroom without
affecting QoS. This is not the only case that can fit in more
kernels. Figure 12 shows more cases.

6 EVALUATION

In this section, we describe the implementation of Combo
and reveal its performance improvement in cloud gaming.

6.1 Implementation of Combo

We implement Combo on top of the CUDA runtime and
Combo supports graphics applications using Optix. There are
other graphics libraries that support hardware-accelerated
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pipeline tracing, such as Vulkan[16], and DirectX[4]. How-
ever, the gap between them and CUDA is too big. They lack
software concepts such as CUDA context and CUDA stream.
In contrast, Optix, developed by NVIDIA, is based on CUDA.
It not only preserves software concepts like CUDA context
and CUDA stream but also follows the CUDA programming
model. Given that Optix is easily integrated with CUDA
programs, it is suitable for implementation in this work.
To evaluate Combo, we implement the PTB adaptor as a

source-to-source compiler. This compiler takes the kernels
from Optix rendering applications and BE applications as
input. Firstly, it transforms these kernels into the PTB mode
and then converts them into the SM-bounding mode using
the transformation method introduced in §4.2. Next, we in-
troduce the duration predictor, which is constructed offline.
It co-locates the RT kernels, CUDA kernels, and Tensor ker-
nels in a pair-wise mode for all possible combinations and
builds a performance surface. The above process is similar
to previous work[39].

6.2 Experimental Setup

Table 7 shows the detailed experimental setup. We choose
four mainstream cloud games (𝑆𝑒𝑟𝑣𝑒𝑟𝑒𝑑 𝑆𝑡𝑒𝑒𝑙 , 𝐷𝑒𝑙𝑖𝑣𝑒𝑟 𝑈𝑠 𝑡𝑜
𝑇ℎ𝑒 𝑀𝑜𝑜𝑛, 𝑄𝑢𝑎𝑘𝑒 2, 𝑇ℎ𝑒 𝐴𝑠𝑐𝑒𝑛𝑡 ). We use the training tasks
of four commonly used DNN models (𝑅𝑒𝑠𝑛𝑒𝑡50, 𝑉𝐺𝐺16,
𝐷𝑒𝑛𝑠𝑒𝑛𝑒𝑡 , 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛) and eight scientific applications from
Parboil as BE applications. The cloud games contain RT ker-
nels and CD kernels. The DNN training tasks contain CD
kernels and TC kernels. The scientific applications only con-
tain the CD kernel. The BE application’s kernels are captured
in a FIFO queue and then launched in order.
Since the cloud gaming corporations do not open source

their codes, we simulate the games with the RT kernels
(𝑝𝑎𝑡ℎ𝑡𝑟𝑎𝑐𝑒𝑟 , 𝑐𝑢𝑡𝑜𝑢𝑡𝑠 , 𝑤ℎ𝑖𝑡𝑡𝑒𝑑 , and 𝑚𝑜𝑡𝑖𝑜𝑛𝑏𝑙𝑢𝑟 ) from the
NVIDIA Optix SDK [10]. Specifically, we simulate the imple-
mentation of cloud games based on the kernel distribution
from the industry [2, 3, 12, 14]. Besides, we collect the game
trace from real game scenarios, which comprises the stable
load mode and the dynamic load mode. Table 2 in §2 lists
the detailed configurations of the cloud games.
The experiments are carried out on a server equipped

with an Nvidia RTX 3090 GPU. Combo does not rely on any
particular hardware features of 3090 and is easy to set up on
other gaming-oriented GPUs that both integrate RT Cores
and CUDA Cores.

6.3 Improving Throughput

In this subsection, we compare Combo with Pilotfish, a tem-
poral sharing scheme that improves GPU utilization while
ensuring QoS. Since no applications contain three types of
computing cores, we need to co-locate the cloud games with

Table 7: Hardware and software specifications.

Specification

CPU Intel(R) Xeon(R) W-2223 CPU @ 3.60GHz
GPU Nvidia GeForce RTX 3090

Software CUDA Version 11.1.96, Optix SDK 7.1.0

Cloud games

Servered Steel, Deliver Us to The Moon,
Quake 2, The Ascent

BE tasks

cp, mrif, mriq, lbm, regtil, cutcp, fft, tpacf,
Resnet50, VGG16, Densenet, Inception

two BE applications. These two BE applications are the DNN
training task (TC kernels and CD kernels) and the scientific
application (Only CD kernels).
Equation 6 calculates the throughput improvement of

Combo compared with Pilotfish. Since different applications
have different durations, we choose to count the duration
of different kernels. In this equation, 𝑇𝑐𝑜𝑚𝑏𝑜_𝑡𝑐 and 𝑇𝑐𝑜𝑚𝑏𝑜_𝑐𝑑
represent the overall durations for TC kernels and CD ker-
nels under Combo, respectively. 𝑇𝑝𝑖𝑙𝑜𝑡 𝑓 𝑖𝑠ℎ_𝑡𝑐 and 𝑇𝑝𝑖𝑙𝑜𝑡 𝑓 𝑖𝑠ℎ_𝑐𝑑
represent the overall durations for TC kernels and CD ker-
nels under Pilotfish, respectively.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 =
𝑇𝑐𝑜𝑚𝑏𝑜_𝑡𝑐 +𝑇𝑐𝑜𝑚𝑏𝑜_𝑐𝑑

𝑇𝑝𝑖𝑙𝑜𝑡 𝑓 𝑖𝑠ℎ_𝑡𝑐 +𝑇𝑝𝑖𝑙𝑜𝑡 𝑓 𝑖𝑠ℎ_𝑐𝑑
(6)

Figure 13 compares the throughput of the BE applications
when adopting Combo and Pilotfish. From the figure, Combo
achieves an average of 14.0% (and up to 38.2%) improvement
over Pilotfish. Combo improves the throughput for all 128
(=4×8x4) co-location groups because it exploits the intra-
SM and inter-SM sharing on the GPU. Specifically, Combo
could adaptively switch the sharing scheme for different load
modes. When the cloud game exhibits a stable load mode,
Combo could utilize the exact inter-SM sharing to harvest all
the free GPU cycles.When the cloud game exhibits a dynamic
load mode, Combo could utilize the relaxed intra-SM sharing
and headroom merge to host as many CD kernels as possible.
As a comparison, Pilotfish only relies on the temporal sharing
scheme to utilize the limited free GPU cycles.

We also observe that Combo achieves the highest through-
put improvements with the game 𝑄𝑢𝑎𝑘𝑒 2. The throughput
improvement with𝑄𝑢𝑎𝑘𝑒 2 is 16.8% on average, while others
are 12.9%, 8.55%, and 12.6%. This is because the performance
gain from intra-SM parallelism depends on the duration of
RT kernels. While 𝑄𝑢𝑎𝑘𝑒 2 has the RT kernels accounting
for 50.6% overall duration, its improvements is the highest.

Moreover, we observe that Combo achieves higher through-
put improvements for compute-intensive BE applications
(𝑐𝑝 ,𝑚𝑟𝑖 𝑓 ,𝑚𝑟𝑖𝑞, 𝑓 𝑓 𝑡 ). This is because memory-intensive ap-
plications (𝑙𝑏𝑚, 𝑟𝑒𝑔𝑡𝑖 , 𝑐𝑢𝑡𝑐𝑝 , 𝑡𝑝𝑎𝑐 𝑓 ) require more memory
resources and their co-runs face more resource contention,
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Figure 13: The throughput comparison of BE applications between Combo and PilotFish. Solid columns stand for

PilotFish, dashed columns stand for Combo.

Figure 14: The average and 99%-ile FPS of the render-

ing application in all the 128 co-location groups with

Combo.

Figure 15: The QoS headroom distribution.

leading to lower throughput improvements. These findings
are consistent with the experimental results in §4.2.

6.4 Guaranteeing QoS

Figure 14 shows the 99%-ile and average FPS for all the co-
location groups. It can be observed that the average FPS
under Combo is higher than 119, and the 99%-ile FPS is
higher than 117. This implies that Combo achieves almost
the same 99%-ile FPS compared to that without co-location.
The great QoS performance of Combo comes from its highest
priority for QoS guarantee.
In the exact integrated-SM scheme, the BE applications

and the cloud game are executed in different SM groups.

Combo first allocates the best-fit SM resources to the cloud
game, which could satisfy its QoS requirement. Second, these
two groups have limited interference with each other. There-
fore, the cloud game hardly has QoS violations.

While the cloud game enters the dynamic load mode, the
scheduling scheme switches to relaxed intra-SM sharing.
This is to avoid potential increases in rendering latency that
may occur in the exact integrated-SM scheme. In the dynamic
load mode, Combo co-locates the RT kernel with CD kernel
only if it would not introduce the QoS violations.

At the switching point of the two sharing schemes, Combo
directly uses the original kernels to serve the rendering of
the next frame. In this way, Combo could guarantee that
the sharing scheme switching does not introduce the QoS
violation. Benefiting from the above designs, Combo achieves
great QoS performance.

6.5 Effectiveness of Headroom Merge

Figure 16 shows the throughput improvement of Combo
compared with Combo-NM. Combo-NM refers to the system
that disables the headroom merge. We also utilize the Equa-
tion 6 for computation. As observed from the figure, Combo
achieves an average of 6.74% (and up to 19.8%) improvement
over Combo-NM. This performance gains attributes to the
enlarged QoS headroom.

As shown in Figure 15, the headroom merge significantly
increases the QoS headroom. This implies two points. Firstly,
the headroommerge provides greater flexibility in co-locating
the RT kernel with CD kernels. More options from BE kernels
could be considered for higher system throughput. Secondly,
some BE applications may have been blocked without the
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Figure 16: The throughput comparison of BE applications between using headroom merge and no merge. Solid

columns stand for Combo-NM, dashed columns stand for Combo.
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Figure 17: The throughput comparison of BE applications between Combo and relaxed intra-SM sharing only. Solid

columns stand for intra-SM sharing scheme, dashed columns stand for Combo.

Figure 18: The trace of the rendering time of frames

in THI. In the white region, the rendering time of the

frame fluctuates and thus relaxed intra-SM scheme

is applied. In the blue region, the rendering time of

the frame is stable and thus the scheduling scheme is

switched to the exact integrated SM sharing scheme.

headroom merge for their kernels cannot fit in the QoS head-
room. With the headroom merge, these applications have
the opportunity to continue the computation.

6.6 Effectiveness of Scheme Switch

Combo can adaptively switch the sharing scheme when the
load mode of cloud game changes. As shown in Figure 18, the
rendering time of the frame varies in a real-world cloud game
𝑆𝑒𝑟𝑣𝑒𝑟𝑒𝑑 𝑆𝑡𝑒𝑒𝑙 . Combo can switch between two schemes
according to the cloud game’s load mode. The load mode
could be perceived by predicting the frame’s rendering time.

We compare the throughput of BE applications between us-
ing Combo and exploiting relaxed intra-SM sharing scheme
without switching to exact integrated-SM sharing scheme.
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Figure 17 shows the throughput improvement of combo com-
pared with intra-SM sharing scheme. Combo achieves an
average of 8.43% (and up to 23.3%) improvement. Besides,
the throughput improvement is more significant on VGG16,
whose kernel duration is longer. As the longer duration
means less opportunity to fit in the headroom, it is hard
for the kernels of VGG16 to fit in the QoS headroom. How-
ever, with exact integrated-SM sharing, it is always possible
for VGG16 to execute on the separated SM group.

6.7 Overhead.

In this subsection we add discussion about the overhead
introduced by Combo.

Offline overhead. The offline overhead of Combo primar-
ily consists of two parts. The first part involves the transfor-
mation of kernels into their PTB and SM-bounding versions
for all applications. In our experiments, we have 4 gaming
applications, 4 DNN applications, and 8 CUDA applications.
This process takes less than 1s. The second part of the offline
overhead is the construction of the duration predictor. It
takes 0.583s on average to build the prediction model.
Online overhead. During the runtime of Combo, the

overhead includes the prediction latency, the latency for de-
termining the scheme, and the kernel launch latency. The
three components involved in the latency are executed se-
quentially, so their latencies cannot overlap. The average
prediction time is 0.06ms, the selection of the scheme takes
0.02ms, and the latency for kernel launch is less than 0.1ms.

7 RELATEDWORK

There are several prior works that focus on improving GPU
utilization with time-division multiplexing. TimeGraph [25]
schedules GPU commands using an event-driven model and
introduces two priority-based scheduling strategies to en-
sure the performance of high-priority kernels. Baymax [17]
increases GPU utilization by optimizing user queries through
kernel reordering. AntMan [33] optimizes deep learning
training by accommodating fluctuating resource demands
and utilizing spare GPU resources to co-executemultiple jobs.
However, these works cannot handle constantly changing
game rendering tasks.
Space-division multiplexing including inter-SM sharing

and intra-SM sharing is another promising approach to im-
prove GPU utilization [28, 31, 34, 38–40]. Representing GPU
inter-SM sharing, Nvidia’s MPS [7] allows multiple appli-
cations to concurrently share a GPU with static partition-
ing. However, its inability to manage dynamic cloud gaming
loads limits its broad applicability and effectiveness. There
are also other works that realize inter-SM spatial multitask-
ing through code transformation [24, 32] and extra hardware

design [41, 42], yet the potential of application-level through-
put improvement is not revealed in these works. With inter-
SM sharing, Laius [38] maximizes the throughput of batch
applications while ensuring the QoS of user-facing services.
Some other works aim to improve the throughput of DNN
inference systems [18–21, 35]. In terms of intra-SM shar-
ing, Plasticine [40] introduces a system of persistent and
elastic blocks to alleviate resource contention, enhancing
GPU throughput by co-locating TC and CD kernels. Warped-
Slicer [34] utilizes a dynamic intra-SM slicing strategy to
partition SM resources across different kernels and it consid-
ers the interference effect of shared resource usage.

Focusing on the domain of cloud gaming, numerous works
have been proposed to enhance the utilization of various re-
sources under game co-location scenarios. In some previous
works, multiple games are co-located together to improve
resource utilization [27, 29, 36]. Vgris [29] virtualizes the
GPU and provides different partitions for multiple games.
vGASA [36] employs an adaptive scheduling approach to
handle multiple games in a cloud gaming scenario, ensur-
ing service level agreement compliance. Besides co-location
among games, PilotFish [37] co-locates cloud games with
deep learning training jobs and enhances GPU utilization
by harvesting idle GPU cycles. It strategically schedules and
preempts kernels based on anticipated idle periods. Besides
cloud gaming, RT cores onGPU can also be leveraged in other
scientific problems. RTNN [43] utilizes RT cores to solve the
neighbor searching problem. It utilizes query scheduling and
partitioning to tackle the issue of hardware under-utilization
in this scenario.

8 CONCLUSION

In this paper, we propose Combo to maximize the utiliza-
tion of GPUs in the cloud gaming scenario. Combo leverages
both intra-SM sharing and inter-SM sharing to improve the
throughput of BE applications, while guaranteeing the QoS
of rendering games’ frames. We devise a compilation method
to utilize RT cores for fine-grained resource management, as
well as two efficient spatial sharing schemes considering run-
time rendering load. Experimental results show that Combo
can achieve up to 38.2% throughput improvement compared
with the state-of-the-art solutions.
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