
IEEE TRANSACTIONS ON COMPUTERS 1

ISPA: Exploiting Intra-SM Parallelism in GPUs
via Fine-grained Resource Management

Han Zhao, Weihao Cui, Quan Chen, Minyi Guo

Abstract—Emerging GPUs have multiple Streaming Multiprocessors (SM), while each SM is comprised of CUDA Cores and Tensor
Cores. While CUDA Cores do the general computation, Tensor Cores are designed to speed up matrix multiplication for deep learning
applications. However, a GPU kernel often either uses CUDA Cores or Tensor Cores, leaving the other processing units idle. Although
many prior research works have been proposed to co-locate kernels to improve GPU utilization, they cannot leverage the Intra-SM
CUDA Core-Tensor Core Parallelism. Specifically, ISPA designs persistent and elastic block to solve the thread slot and shared
memory contention between co-located kernels. ISPA also adopts the register allocation method to manage the register contention.
These resource management methods are applicable for both white-box kernels and cudnn kernels. Experimental results on an Nvidia
2080Ti GPU show that ISPA improves the system-wide throughput by 15.3% for white-box workloads, and 7.1% for cudnn-based
workloads compared with prior co-location work.

Index Terms—Intra-SM Parallelism, Tensor Core, GPU
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1 INTRODUCTION

NUMEROUS applications (for example, physical simula-
tion [1], neuroscience [2], and deep learning [3]) are

computationally intensive, and GPUs are commonly used
to supply this computational capacity. Nvidia introduced
Tensor Cores to accelerate matrix multiplication operations
(GEMM operation) since the Volta architecture [4]–[6]. Ten-
sor Cores were limited to usage with the GEMM operation.
A GPU program can utilize the Tensor Cores by using the
appropriate CUDA APIs [7] or cudnn library functions [8].
Without these proprietary APIs and cudnn kernels, ap-
plications that require matrix multiplication cannot take
advantage of the Tensor Cores.

The hardware design of a streaming multiprocessor (SM)
in today’s modern GPUs is depicted in Figure 1. In general,
a GPU contains several SMs (an Nvidia RTX2080Ti GPU, for
example, has 68 SMs), and kernels are scheduled to execute
on the SMs. CUDA Cores and Tensor Cores are distinct units
that share the SM’s full memory stack. The general-purpose
operation is performed by CUDA Cores, whereas matrix
multiplication is accelerated by Tensor Cores.

In general, a GPU kernel is executed in warps (each warp
contains 32 threads), and an SM can execute multiple warps
concurrently [5]. When a warp’s data and computational
resources are ready, it starts to run. Thus, if two ready warps
each use Tensor Cores and CUDA Cores, they can take use
of two hardware’s parallelism. However, as illustrated in
the left SM of Figure 1, the current GPU launches all the
blocks of a kernel to the SM before the blocks of other
kernels. While a single kernel either only uses CUDA Cores
or primarily Tensor Cores, one computational resource is
squandered. (Tensor Cores require only a little assistance
from CUDA Cores, such as C matrix accumulation.)

This paper is aimed at the private datacenter scenario,
where all applications’ source codes are available, as many
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Fig. 1: Difference between ISPA and prior work.

previous works [9]–[14] have indicated. In private data-
centers, multiple users concurrently submit various appli-
cations to the GPUs. For example, deep learning applica-
tions utilizing Tensor Cores and scientific programs utilizing
CUDA Cores may coexist on the same GPU [9], [10], [15],
[16]. In this case, by scheduling the kernel blocks as shown
in the right SM of Figure 1, CUDA Cores and Tensor Cores
can be used concurrently, significantly increasing processing
throughput. Therefore, we propose ISPA, which exploits the
CUDA Core-Tensor Core parallelism by carefully schedul-
ing the blocks in the kernels of co-located applications.

Apart from ISPA, there are prior works co-locating
multiple GPU applications to optimize the throughput [9],
[10]. Baymax [9] and Laius [10], for example, co-locate
GPU workloads to improve the system throughput while
maintaining low latency for high-priority applications. They
either reorder GPU task invocations or adjust SM alloca-
tions between GPU kernels based on the Nvidia MPS [17]
or CUDA stream [18]. However, both MPS and CUDA
stream launch kernels sequentially. A kernel’s block can be
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scheduled on an SM only if the resources in the SM have
not been used up. Since GPU kernels generally have many
blocks to hide the stall cycles due to data access, a kernel’s
resource occupation makes other kernels’ blocks unable to
be scheduled on the SM. Therefore, these interfaces cannot
directly make use of the intra-SM parallelism due to their
unawareness of resource contention.

There are four main challenges that must be resolved
in ISPA, without modifying the GPU hardware. Challenge-
1: the hardware driver provides the block scheduling algo-
rithm, which leads to the thread slots contention on the SM.
In this case, a mechanism is required to schedule the blocks
of different kernels to an SM concurrently. Challenge-2:
the size of shared memory in an SM is limited. A block
cannot be launched when the current blocks already take
all the shared memory space. A method is required to
tune a block’s shared memory usage to enable the intra-SM
parallelism. Challenge-3: Many applications rely on cudnn
library for high performance. cudnn kernels are black-box
and have an extreme register usage. A method is needed to
adjust the kernel’s register usage. Challenge-4: A runtime
scheduling strategy is required to carefully adjust the co-
running kernels’ block setup to maximize the throughput.

ISPA involves compilation and runtime schedule to
tackle the four challenges. Specifically, ISPA adopts per-
sistent block to solve GPU kernels’ unnecessary thread
slots occupation (Challenge-1). Moreover, ISPA discovers
that the GEMM task’s block size is adjustable. A smaller
block size brings less shared memory usage. Based on
this insight, ISPA proposes an elastic block technique to
solve the shared memory contention (Challenge-2). Besides,
ISPA discovers that DNN applications use the specific in-
ternal implementation though cudnn kernels have multiple
implementations. ISPA locates the specific implementation
through profiling the long-running applications. Besides,
ISPA adjusts the kernel’s register usage through compilation
options (Challenge-3). Using these above three optimization
methods, ISPA provides several versions for each kernel.

Lastly, ISPA uses an online-offline collaborative method
to make scheduling decisions (Challenge-4). In the offline,
ISPA searches the optimal configurations for mainstream
kernel pairs and constructs their duration prediction mod-
els. When real-system applications arrive randomly, ISPA
makes co-running decisions based on offline information
and online queue status to maximize the system throughput.
Note that, the main insight of ISPA is that the kernels
could enjoy the intra-SM parallelism when the resource
contention on the SM is solved. Therefore, ISPA utilizes
these three resource management methods to exploit the
intra-SM parallelism with CUDA stream, which is unaware
of the resource contention. Besides, all kernel versions are
generated automatically. The only effort for programmers is
to check the correctness of elastic-block kernel versions.

The main contributions of ISPA are as follows:
• Comprehensive analysis of the intra-SM CUDA

Core-Tensor Core parallelism. We identify the fac-
tors that impact the CUDA Core-Tensor Core paral-
lelism. The analysis motivates the design of ISPA that
maximizes the GPU throughput with co-location.

• The design of fine-grained resource management
techniques. We could adjust a kernel’s issued block

number and shared memory usage by adopting the
persistent and elastic block. We could also adjust the
kernel’s register usage using the compilation flag.

• The in-depth analysis of the cudnn kernel’s re-
source usage and their scheduling method. We char-
acterize the resource usage characteristics for cudnn
kernels, and make the scheduling strategy.

• The pure software implementation without hard-
ware modification. ISPA is applicable for current in-
production GPUs to improve resource efficiency.

We evaluate ISPA on an Nvidia 2080Ti GPU. Our exper-
imental results show that ISPA improves the system-wide
throughput by 15.3% for white-box workloads and 7.1% for
cudnn-based workloads compared with prior work.

2 RELATED WORKS

Co-locating applications in datacenters has been an active
research area because it can improve the utilization. There
are two main directions about the tasks co-location: through-
put improvement and quality of service management.

There are prior works focus on improving the through-
put of the GPU system. Some works improve the through-
put by focusing on the scheduling mode, and other re-
searches target the resource management. For example,
SMK [15] enables block-level scheduling by adding the
function of block preemption in the GPU. Maestro [19] is
proposed to change the multitasking mode for better per-
formance on GPUs dynamically. Besides, many works [20]–
[22] focus on the SM management in multitasking GPUs.
These approaches manage the SM allocation based on clas-
sification or prediction. Compared with ISPA, these works
use simulators to validate their ideas’ effectiveness, which
is not supported in in-production GPUs. Besides, they do
not consider the case of two computing units, which makes
them fail to work.

Some researches focus on the kernel’s block dimensions
and thread-level parallelism to improve the throughput.
For example, DYNCTA [23] allocates fewer blocks for ap-
plications suffering from memory bandwidth contention.
However, GPU memory bandwidth has kept growing recent
years while the maximum TLP remains the same. The mem-
ory bandwidth contention between blocks is not a critical
problem nowadays. Pai et al. [24] propose elastic kernels to
permit fine-grained resource usage. However, this method
cannot be applied to the kernels using shared memory.

Quality of service management is also a popular research
direction [9], [10], [25]. With the support of MPS scheduling,
Baymax [9] predicts performance interference among co-
located GPU applications for a temporally shared GPU.
Laius [10] predicts the kernel duration and reorders the ker-
nel on the spatial multitasking GPUs. TimeGraph [26] and
GPUSync [27] use priority-based scheduling to guarantee
the performance of real-time kernels. High-priority kernels
are executed first if multiple kernels are launched to the
same GPU. Since these works all rely on the MPS [17]
which is kernel-level scheduling, they could not exploit the
two hardware parallelism. All these works focus on high-
priority applications’ performance, which are inapplicable
for throughput problems.
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TABLE 1: Specifications of an Nvidia RTX 2080Ti GPU.
Resource Value Resource Value

Number of SMs 68 Max Threads per SM 1024
Registers per SM 65536 Shared Memory per SM 64 KB
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Fig. 2: Makespan reduction of kernel pairs.

Besides these above researches, there are [28]–[32] also
works for microbench’s performance model development
for NVIDIA GPUs, which are orthogonal to our work.

3 MOTIVATION

In this section, we first present the background and the
parallelism possibility of Tensor Core and CUDA Core.
Secondly, we identify the constraints of existing scheduling
interfaces on co-running tasks, which motivates our work.

3.1 Background and experimental setup
We use an Nvidia RTX 2080Ti GPU (Turing architecture) [5]
as the experimental platform throughout this paper. Table 1
lists the detailed hardware specification of the experimental
platform. In the conference version, we comprehensively
validate the two computing units’ parallelism by customiz-
ing two well-tuned GPU kernels. Briefly, we implement
KernelA to be a kernel that performs GEMM operation
based on the Nvidia sample code [7] using Tensor Cores.
We implement KernelB to be a kernel that uses CUDA
Cores. Both KernelA and KernelB have 68 blocks with 512
threads, and they have the same solo-run duration.

We use the metric Makespan Reduction to measure
the degree that the two kernels are processed in parallel.
Equation 1 calculates the makespan when co-running two
kernels. In this equation, T1, T2, and Tcolo represent the
solo-run time of the first kernel, the solo-run time of the
second kernel, and the total makespan of completing the
two kernels at co-location.

Makespan Reduction =
T1 + T2 − Tcolo

T1 + T2

(1)

When two KernelA or two KernelB co-run, the
makespan reduction is 0. When KernelA and KernelB co-
run, the makespan reduction is 45%. This is mainly because
the two kernels’ blocks run in parallel on the Tensor Cores
and CUDA Cores. There is potential intra-SM parallelism,
if the co-running kernels use different processing units.
Note that, the makespan reduction does not reach 50%. This
is because GEMM kernel has the computation part relying
on CUDA Core, such as the C matrix accumulation.

3.2 Poor utilization of the intra-SM parallelism
We then investigate whether real-system applications can
benefit from the intra-SM parallelism. We refer to the ker-
nel that uses CUDA Cores as CD kernel, and the kernel
that uses Tensor Cores as TC kernel for easing of de-
scription. In this experiment, we choose an open-source

TABLE 2: Resource usage of all kernels.

Kernel max issued thread shared reg
blk num blk num slot mem size

tgemm-1 1 3137 25% 100% 50%
tgemm-2 1 1568 25% 100% 50%
cuconv-1 1 1568 25% 64% 69.5%
cuconv-2 2 1568 25% 100% 79.2%

bfs 2 6 100% 39.34% 46.88%
cp 7 3 37.25% 0 41.02%

cutcp 8 258 100% 25% 68.75%
fft 8 15 100% 25% 51.56%

histo 1 3 100% 37.5% 40.63%
img 1 10 100% 75% 60.94%
lbm 8 30 100% 0 93.75%
mrif 4 15 100% 0 54.69%
mriq 4 120 100% 0 53.13%
pns 3 3 100% 9.38% 73.83%

regtil 8 15 100% 0 90.63%
sgemm 6 121 100% 4.69% 91.41%
spmv 8 16 100% 0 76.56%
stenc 8 15 100% 12.5% 76.56%
tpacf 3 3 100% 56.25% 58.59%

GEMM kernel used in Nvidia cutlass [33], [34] (tgemm)
and cudnnConvolutionForward() kernel (cuconv) as TC
kernel. We use all fifteen scientific applications’ kernels from
Parboil benchmark [35] suite as CD kernel.

Besides, CD kernels’ input parameters are all set as
default. They have been extensively studied and have stable
resource usage. For cuconv kernel, we choose the param-
eters of Resnet50’s [36] first two convolution layers with
a batch size of 32. Since convolution operation could be
transformed to im2col operation [37] and GEMM operation,
we configure the tgemm using the GEMM parameters cor-
responding to the above two convolutional layers. Figure 2
shows the makespan reduction of co-running TC kernel and
CD kernel using CUDA stream. As shown in the figure, all
kernel pairs have no make reduction.

The real-system applications cannot utilize the intra-SM
parallelism due to the intrinsic scheduling logic of CUDA
stream. Only when all the blocks of a kernel are launched
on the SM, and the SM’s resources are not used up, another
kernel’s blocks could be scheduled on the SM. The resources
include thread slots, shared memory, and register. Since
CUDA stream is unaware of the resource contention, the
kernels may execute sequentially due to the contention.

We then collect all kernels’ issued block number per
SM (“issued blk num”) and the maximum resident block
number on SM (“max blk num”). On this basis, we profile
their resource usage on the SM. As shown in Table 2, we
have three observations from this table.

First, all kernels launch a large number of blocks to the
SM, which far exceeds the maximum resident block number.
A launched kernel prevents the latter kernel’s block from
launching. This is identified as the thread slot contention.
Second, 10 of 19 kernels require shared memory, and 3
of 4 TC kernel cases use all the shared memory. If there
is no thread slot contention, co-located kernels also suffer
serious shared memory contention. Third, tgemm kernel
with different parameters have the same resource usage,
while cuconv kernel does not. This is because cudnn is the
packaged library. It has multiple internal implementations,
and the calling logic is based on parameters. Since the
internal implementations and calling logics are black-boxed,
cuconv’s resource usage at runtime is unclear. Moreover,
cuconv kernels use more than 69% registers with only 25%
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Fig. 3: Design overview of ISPA.

thread slots. There is severe register contention.
Based on the above analysis, we can conclude that kernel

co-location is first limited by the sequential scheduling logic,
bringing the thread slots contention. Second, GPU kernels
contend for memory resources, such as shared memory and
registers. Third, cudnn kernels’ resource usage is unclear,
and their implementations are black-box. Therefore, the
kernel co-location with CUDA stream suffers from low
makespan reduction. We propose ISPA to exploit the intra-
SM parallelism for higher system throughput.

4 OVERVIEW OF ISPA
To solve the problems in taking advantage of Intra-SM par-
allelism, we design and implement ISPA. Figure 3 shows the
design overview of ISPA. ISPA targets the GPU scheduling
optimization on the private cloud, and administrators have
access to mainstream applications’ implementations.

As shown in Figure 3, ISPA is comprised of an en-
hanced source-to-source compiler, a throughput-oriented
strategy maker, and an online kernel scheduler. The en-
hanced source-to-source compiler designs persistent and
elastic block to manage the thread slot and shared memory
usage, and also utilizes the compilation flags to manage
the register allocation (Challenge-1&2). With the compiler’s
support, the throughput-oriented strategy maker searches
the optimal co-running configurations and constructs the
duration prediction models for mainstream kernel pairs.
Besides the white-box TC kernels, the strategy maker also
supports cudnn kernels (Challenge-3). Finally, based on
these scheduling strategies, the kernel scheduler makes real-
time scheduling decisions to maximize the GPU throughput
(Challenge-4). In more detail, ISPA works as follows.

1) The enhanced source-to-source compiler provides
three compilation optimization methods. First, the compiler
could transform GPU kernels to persistent block mode to
resolve thread slot contention. Second, the compiler could
generate TC kernels’ elastic block versions using smaller
block sizes. Third, the compiler supports the register allo-
cation using the maxrregcount compilation flags.

2) We collect all the TC kernels on the cloud and the
mainstream CD kernels based on their historical usage. For
the kernel pairs with white-box TC kernels, the throughput-
oriented strategy maker searches the optimal co-running
configurations from all the possible ones. The configuration
includes the block size, persistent block number, and reg-
ister usage. With the optimal co-running configuration, we

TABLE 3: Optimal PTB block number of different kernels.
tgemm bfs cp cutcp fft histo img lbm

max 1 2 7 8 8 1 1 8
opt 1 1 4 8 2 1 1 1

mrif mriq pns regtil sgem spmv stenc tpa
max 4 4 3 8 6 8 8 3
opt 1 3 1 4 3 1 4 3

further construct the duration prediction models. For the
kernel pair with cudnn kernels, We first obtain these cudnn
kernels’ resource usage, and further adjust the co-located
kernel’s resource usage to get the maximum throughput.

3) When multiple GPU tasks arrive in real-time, the
online kernel scheduler classifies the tasks’ kernels into TC
kernels and CD kernels. The online scheduler tracks the run-
ning kernels’ status on the GPU and selects two co-running
kernels from different tasks using different hardware.

Through the above scheduling method, ISPA improves
the system-wide GPU throughput by exploiting the intra-
SM parallelism. Note that, since GPU applications are often
stable and long-running, administrators of private clouds
generally have access to the mainstream applications’ codes,
and the offline overhead is acceptable (Section 7). Besides,
ISPA could automatically use three resource management
methods. All kernel versions are generated by our source-to-
source compiler. While the GEMM task using Tensor Cores
naturally supports the elastic block, legacy applications with
CUDA Cores require programmers’ directives. Therefore,
the only effort for programmers is to double-check the
correctness of elastic-block kernel versions.

5 SOURCE-TO-SOURCE COMPILER

5.1 Thread slot management

5.1.1 Persistent block
As discussed in Section 3, GPU kernels often use a large
number of blocks to hide the stall cycles due to data access,
and the co-running kernels contend for the thread slots.
To alleviate the slot contention, we adopt the persistent
block technique (PTB) [38] to adjust a kernel’s resident block
number on an SM. The persistent block is abstracted as
the block worker, which is permanently resident on the
GPU until the kernel completes. Each persistent block is
responsible for multiple original blocks’ computation. The
optimal persistent block number means minimum residency
of blocks that has comparable performance to the maximum
occupancy of SM.

For the Parboil benchmarks [35], Table 3 shows the
optimal persistent block numbers (“opt”) and the maximum
resident block numbers (“max”) of their main kernels. The
optimal persistent block number is profiled using the algo-
rithm in Section 6, and the maximum resident block number
is profiled with CUDA interface. As observed, there is a
gap between the optimal persistent block number and the
maximum resident block number, not to mention the issued
block number. It is not always necessary to launch a large
number of blocks for a kernel to achieve high perfor-
mance. Based on this observation, we adopt the persistent
block technique to resolve the thread slot contention.

Table 4 shows the hardware resource usage of fft,
sgemm, and tgemm with two kernel versions. Other kernels
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TABLE 4: Resource usage for different kernel versions.
fft fft sgemm sgemm tgemm tgemm

Version ORI PTB ORI PTB ORI PTB
Issue unit (%) 14.9 14.7 29.1 28.8 9.54 9.51

Core (%) 15.3 15.1 41.5 40.9 33.1 32.9
L2 hit rate (%) 50.2 50.2 23.3 48.6 81.9 81.9

Dram (%) 5.0 4.9 74.4 47.1 24.6 24.7
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Fig. 4: Performance difference between PTB-based task and
original task.

also have similar results. As observed, all kernels’ two ver-
sions have the same core utilization and issue unit utiliza-
tion. Since the issue unit utilization reflects the instruction
execution speed, it directly determines the kernel’s duration.
Based on that, the PTB-based kernel version could achieve
the same performance as the original kernel version. Also,
two versions may have different L2 hit rates and DRAM
utilization. This is because the PTB-based kernel has fewer
active threads, which leads to fewer memory requests.

Some works [23] focus on optimizing kernel perfor-
mance by tuning thread-level parallelism (TLP). They state
that the maximum TLP leads to high amounts of idle time
at the cores. The primary reason is high memory access
latencies with limited memory bandwidth. This work is
fully based on the GPU simulator. However, our experi-
mental results indicate that tuning TLP with PTB for the
same benchmark does not bring performance improvement.
We have the same results on Nvidia 1080Ti, P100, V100,
and 2080Ti. Therefore, our approach does not enjoy any
performance improvement from PTB.

We also conduct application-level performance experi-
ments after transforming all the kernels to the PTB version.
In Parboil, 11 of the 15 applications have multiple ker-
nels. In addition to Parboil, we also choose five commonly
used DNN models (Resnet50, ReNext, VGG16, Inception,
Densenet) for this experiment. Figure 4 shows the perfor-
mance difference between the PTB-based and original tasks.
Index 1 - 15 represents the tasks from Parboil, while index 16
- 20 represents five DNN models. As observed, the average
performance difference of all tasks is 1.1%. This means
that the PTB technique does not bring severe performance
degradation. The main reason behind the result is PTB-
based kernel has the same instruction issue efficiency.

5.1.2 Automatic compilation
We use automatic source-to-source compilation to convert
a kernel into the PTB version. The compilation process is
divided into three steps. First, we identify the original kernel
function. Second, we replace the “blockId” in the original
function with new variables to ensure correctness. Lastly, we
add related logic to loop the original blocks’ computation.

5.1.3 Experimental results
We also conduct the co-running experiments same as that
in Section 3. While the cudnn kernels are black-box, we
only apply the persistent block transformation to the code-
available kernels. Figure 5 shows the makespan reduction
of the kernel pairs with the PTB technique.
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Fig. 5: Co-running two kernels in persistent block mode.
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As observed, the co-running between six CD kernels
and tgemm has a makespan reduction of 28.8% on aver-
age. The co-running between eight CD kernels and cuconv
reduces the makespan of 9.6% on average. Meantime, other
kernel pairs have little makespan reduction. The improved
makespan reduction comes from two reasons. First, after the
kernels are converted to persistent block mode, they avoid
unnecessary thread occupation. Secondly, the six CD kernels
mainly contend for thread slots with TC kernels but not for
memory resources.

5.2 Shared memory management
While there is no official shared memory multiplexing
tool between kernels, we focus on the connection between
shared memory size, block size, and performance. We pro-
pose elastic block to solve the shared memory contention
by adjusting the block size.

5.2.1 Elastic block
TC kernel. Tensor Cores can only perform GEMM task,
which has been extensively studied. As shown in Figure 6,
a GEMM task generally divides the result matrix (C matrix)
into multiple tiles, and each tile’s computation corresponds
to one block. At each moment, each block only loads partial
A matrix and B matrix into the shared memory due to the
space limitation. Each block then slides on the K dimension
to complete all computations and obtain the correct result.

Shared mem = (tile x× tile k + tile y × tile k)× sizeof(half)

tile x× tile k ∝ block size

tile y × tile k ∝ block size

(2)

Specifically, each block reads the A matrix of tile k ×
tile x and the B matrix of tile k × tile y to the shared
memory. Equation 2 shows the shared memory usage used
by a block. Since the block’s threads load the data from
the global memory to shared memory collaboratively, we
can observe the linear relationship between block size and
shared memory usage. According to Equation 2, when the
block size reduces, the tile size becomes smaller, and the
shared memory usage reduces. We refer to the kernel with
a smaller block size as the kernel’s elastic block version.
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Fig. 8: Co-running two tasks in persistent and elastic block.

CD kernel. Since Tensor Cores could only deal with
the matrix multiplication, the TC kernels naturally sup-
port adjusting the block size. While CUDA Cores support
various tasks, it is unknown for CD kernels. We then
investigate whether the benchmarks of Parboil [35] have
adjustable block sizes. Experimental results show that 13 of
15 benchmarks support block size adjustment. The rest two
benchmarks with simple modification also support it.

These GPU kernels have adjustable block sizes because
they all belong to one basic programming model, as shown
the Output1 in Figure 7. While GPU programming divides a
task into multiple subtasks, each block targets for a subtask.
One GPU kernel may have multiple inputs and multiple
outputs. As for each block, it performs the computation
based on the sub-inputs to obtain the right sub-outputs.
We could also calculate each block’s shared memory usage,
which is shown in Figure 7. Assuming there are N sub-
inputs, we could calculate the overall shared memory usage
in Equation 3, similar to Equation 2. Therefore, the shared
memory usage has a linear relationship with the block size.

Shared mem =

N∑
i=1

sub inputi × sizeof(sub inputi)

sub inputi ∝ block size i ∈ [1, N ]

(3)

Note that, our elastic block technique is different from
the elastic kernel proposed by Pai et al. [24]. They only focus
on the kernels without shared memory usage. Their method
is more like the PTB technique, which adjusts the TLP.

5.2.2 Automatic compilation
We use the automatic source-to-source compilation to gener-
ate a kernel’s elastic block versions. The compilation process
is divided into four steps. First, we identify the macros
or constant values that assign the shared memory usage.
Second, we identify the variables related to the block dimen-
sions. Third, we locate the variables related to the shared
memory values and block dimensions using the abstract
syntax tree. Fourth, we modify these variables to create
the elastic block version, and give a kernel version with
the same result as the original version under the default
parameters. The only effort for programmers is to double
check the correctness of these elastic-block kernel versions.
Besides, since these kernel versions have different shared
memory usage, we need to decide to call different kernel

version at the runtime. This part is elaborate in Section 6
and Section 6.3.

5.2.3 Experimental results
We then verify the effectiveness of elastic block mechanism.
As shown in Figure 8, the co-running between the remaining
nine CD kernels and tgemm gains a makespan reduction
of 16.1%. The co-running between seven CD kernels and
cuconv gains a makespan reduction of 10.1% on average.
The improved makespan reduction comes from the fine-
grained shared memory management. While the elastic
block mode uses less shared memory, more parallelism is
exploited. Besides, the cuconv kernel still mainly relies on
GEMM for calculation [34], [39], though these kernels are
black-box. If we can have access to their source code, we
can also generate the corresponding elastic block version.

5.2.4 Discussion about elastic block
(1) Programming mode. Besides the above mode, there are
also other programming modes. For example, some threads
in a block are not responsible for the output computation,
while common threads are. These threads go to the specific
computation path based on the conditional expression. The
expression is related to the thread index, which is generally
hard-coded. In this case, adjusting the block size directly
may incur the correctness problem of the condition. We
further investigate the programming modes in mainstream
benchmarks. We choose the kernels from Parboil [35], Ro-
dinia [40], and CUDA official samples. 81.6% of GPU kernels
in more than 120 kernels belong to the basic programming
model. Since private cloud administrators have access to
the applications’ implementations, it is easy to check the
possibility for elastic block.

(2) Performance degradation. When the block size
reduces, the shared memory usage reduces, which may
bring more global memory accesses. More memory accesses
may lead to performance degradation. Experimental results
show that only bfs and histo in Parboil have a 5.1% per-
formance degradation on average. Besides, we collect the
matrix multiplication parameter from five mainstream DNN
networks. Experimental results show that 81.2% of input
parameters have performance degradation under 7%.

To explain the above results, we take the tgemm kernel
as an example to make a qualitative analysis. Original
tgemm kernel only has one running block in each SM at
each moment. The block is responsible for one result tile.
As shown in Equation 4, the result tile’s computation time
could be divided into four parts: the loading time of A and B
matrix, the computation time of the result tile, the store time
of the result tile, and other auxiliary times. Since tile x and
tile y are constant for the original kernel, we could derive
Equation 5. One tile’s computing time is proportional to K .

Torigin = Tload + Tcompute + Tstore + Tothers

Tload = mem load(tile x ∗K + tile y ∗K)

Tcompute = compute(tile x ∗ tile y ∗K)

Tstore = mem store(tile x ∗ tile y)

(4)

T origin = a×K + b×K + c (5)

When the block size is halved, two blocks perform
computation on each SM at each moment. Each block is
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TABLE 5: Resources limit of different kernels.
kernel bfs cp cutcp fft histo img lbm

PEB blk 2.6 4.5 3.6 4.7 3.5 4.0 2.6
Resource Shared REG REG Shared REG REG REG

kernel mrif mriq pns regtil sgem spmv tpacf
PEB blk 4.5 4.7 2.6 2.7 4.0 3.2 3.1

Resource REG REG REG REG REG REG REG

responsible for one sub-tile. Meanwhile, the halved block
size brings halved tile x and halved tile y. Therefore, the
original tile is divided into four sub-tiles, and each block
needs to complete the calculation of two sub-tiles. Since the
sub-tile’s computation division is the same as the original
tile, we could get the two blocks’ computation time and the
kernel’s duration from Equation 6.

Telastic = 2× T2∗sub−tile

= 2× Tload + Tcompute + Tstore + Tothers

= 2× a×K + b×K + c

(6)

Based on Equation 5 and Equation 6, we could derive
the performance degradation, as shown in Equation 7.

Perfdiff =
Telastic − Torigin

Torigin

=
a×K

a×K + b×K + c
(7)

Based on Equation 7, when K is relatively small, the per-
formance degradation of elastic block is limited. We further
investigate the input parameters of the GEMM kernel for
all DNN models. 86.3% of K is less than 1152, while tile x
and tile y are 128. Besides, the GEMM kernel uses many
memory optimization methods, such as memory coalescing
and continuous data loading (use float4 to load half data).
These methods reduce the impact of extra memory accesses.
Furthermore, while the block size is halved, the queuing of
two blocks at the memory controller introduces an implicit
pipeline. Since the original kernel only has a block, the
memory access and computation could only be performed
sequentially. The implicit pipeline also reduces the negative
impact. Based on the above three reasons, the performance
degradation of the elastic block version is limited. Likewise,
the performance degradation of other kernels is also limited.

5.3 Register management

As mentioned in Section 3, cuconv kernel is prone to bring
the register contention. We count the elastic block numbers
that all kernels could launch to the SM while co-running
with cuconv. Meanwhile, we also record the resource type
that restricts the kernel from launching more blocks. As
shown in Table 5, 13 in 15 kernel pairs are limited by register
contention, consistent with our analysis.

NVIDIA provides two register allocation methods to
launch more blocks to the SM and increase the kernel’s
occupancy. First, an application could optionally provide
additional information to the compiler in the form of launch
bounds. Launch bounds specify maxThreadsPerBlock
and minBlocksPerMultiprocessor. If launch bounds are
specified, the compiler derives the upper register limit L.
Second, an application could optionally add a compiler flag
maxrregcount to hard limit the register number used by the
kernel. It forces the compiler to rearrange the register usage.

Since the first method targets the solo-run kernel, it
cannot set a hard upper limit for the register usage. There-
fore, we choose the second allocation method. Note that
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Fig. 9: Co-running two kernels with further register control.

when the compiler cannot stay below the imposed limit,
it will simply spill the register to local memory. These local
variables are stored in global DRAM memory, and they can
be cached in L1 cache and L2 cache. Therefore, excessive
register reduction could bring the memory system pressure.
Therefore, we just adjust the register usage to launch one
more block instead of the original resident block number.

We perform the experiments with cuconv after the CD
kernels are applied with register control. Figure 9 shows
the corresponding experimental results. While there is no
register contention for the tgemm, the kernel pairs with
tgemm do not gain throughput improvement. Besides, four
kernel pairs (cp, cutcp, mrif , mriq) with cuconv have
further reduce the makespan by 3.1% on average. This is
because these four kernels launch one more block on the SM,
which better utilizes the computing resources. Therefore, the
kernel pairs exploit more parallelism.

6 COLLABORATIVE SCHEDULING

As mentioned in Section 5, we can use three methods to
manage thread slot, shared memory, and register usage.
However, how the kernel’s elastic block version, persistent
block number, and register usage are determined at runtime
is still unknown. Besides, we are unaware of the cudnn ker-
nels’ resource usage. Customizing the scheduling strategy
for the cudnn kernel is also a non-trivial problem.

Specifically, three problems should be solved for the run-
time kernel scheduling. First, what are the resource usage
characteristics of cudnn kernels, and how to perceive their
resource usage at runtime? Second, how to determine the
kernel’s resource usage at the runtime? Third, how to choose
the co-running kernel pairs at the runtime?

ISPA uses an online-offline collaborative method to iden-
tify the scheduling that results in high system-wide through-
put. While the cloud hosts long-running applications, we
select mainstream kernels based on their usage, and gen-
erate all possible TC-CD kernel pairs. The offline strategy
maker first perceives the resource usage of the cudnn kernel
used by a DNN service (Problem 1). Second, the strategy
maker searches for the optimal persistent block number for
all kernel versions. Based on the optimal persistent block
number, the strategy maker locate the optimal configuration
pair based on the co-running performance for each kernel
pair (Problem 2). Third, the strategy maker constructs the
duration prediction model for each kernel pair with op-
timal configurations. Finally, based on the configurations
and duration models from the offline, the online scheduler
performs online kernel scheduling(Problem 3).

6.1 Cudnn kernel profiling
As mentioned in Section 3, the cudnn kernels have different
resource usage when using different input parameters. Al-
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Fig. 10: The definition of internal implementation names.

TABLE 6: The resource usage of cudnn kernels.
CONV TYPE T1 T2 T3 T4 T5 T6 T7
Register (%) 69.5 79.3 79.3 67.2 82.8 73.4 76.9

Shared memory (%) 64.0 100 64.0 64.0 100 76.8 76.8
Max DRAM BW (%) 32.5 64.1 42.8 70.3 50.2 41.9 32.2
FP32 utilization (%) 0 0.31 0 0.19 0 0 0

though the official document does not present any informa-
tion about the kernel’s resource usage, it indicates that the
function calls of the cudnn kernel are deterministic. Intu-
itively, we could record the resource usage of cudnn kernels
under all parameters of a DNN service, and customize the
scheduling policies for them, respectively. However, such an
approach brings severe offline profiling overhead.

We then comprehensively analyze the cudnn kernel’s
resource usage to reduce the profiling overhead. In the full
log from nsight, we find that each call has the internal func-
tion name it uses. The internal function selection is done by
the cudnn kernel. We statistic the internal implementations
when the five DNN models in evaluation are configured
with BS as 32 and 16. Experimental results show that there
are seven internal implementations for these models. Fig-
ure 10 presents the name of an example implementation
and its definition rules. Table 6 shows the resource usage
of these internal implementations.

We have several observations from the above table. First,
we could get the internal implementation names through
nsight, but we cannot control the launch of these kernels.
Second, the internal implementation usage is determined by
the cudnn kernel, and the number of these implementations
is limited. Third, the batch size of a DNN service also deter-
mines the cudnn kernels’ implementation. Fourth, existing
cudnn kernels exhibit similar resource usage characteristics.
All kernels use limited thread slots and a large amount of
shared memory. Half of the register usage is over 70%.

We maintain two tables to support the cudnn kernel
scheduling based on the above observations. The first table
records the internal implementation used by a DNN service
with different batch sizes. We inquire about the first table
to perceive the cudnn kernel’s internal implementation at
runtime. Besides, the second table record the resource usage
of all the possible cudnn kernel’s internal implementations.
We use these resource usage to tune the CD kernel’s config-
uration for optimal throughput offline.

6.2 Locating the optimal persistent block setup

While persistent block is needed for resolving the thread
slot contention, we need transform all the possible kernel’s
all the versions (original version or elastic version) to the
persistent block mode. Therefore, we design a searching
method based on dichotomy to locate the optimal persistent
block number (blkopt) for each kernel. The kernel’s original
performance is used as the baseline and the input for the
search process. The searching range for blkopt is between 1
and the maximum resident block number (blkmax).

Perf degradation < threshold?
1. Reduce kernel versions

2. Skip the performance test based 
on CD kernel’s block number

block num < 0.5 * optimal block num

One possible version pair
4. Skip the quartered version 

test based on the performance 
of halved version

TC-CD kernel pair

TC kernels and CD kernels

Optimal configuration pairs

3. Try register allocation optimization

Fig. 11: Identify the optimal configuration pairs.

Since the persistent block version’s performance with
blkmax is equal to the original kernel’s performance, we
skip its performance test and begin with blktest = (blkmin+
blkmax)/2. If the performance is equal to the baseline, we set
blkmax to blktest and decrease blktest to (blkmin+blkmax)/2.
If the performance is worse than the baseline, we set blkmin

to blktest and increase blktest to (blkmin + blkmax)/2. When
all possible block numbers are searched, the optimal block
number of the kernel is returned. While the max resident
block of the SM is 16, each kernel requires up to 4 profiling
steps to search for the optimal persistent block number.

6.3 Identifying optimal configuration pairs
Then, we need to customize the scheduling strategy for all
possible kernel pairs. For a kernel pair, we need to select
each kernel’s specific version (original version or elastic
version) and its persistent block number. Since elastic block
may bring performance degradation, we only create the
halved and quartered block versions for each kernel. On this
basis, each kernel has three kernel versions, which could be
configured with multiple persistent block numbers. Besides,
register optimization needs also be considered. A complete
search process for the configurations has O(N4) complexity.
Therefore, we design a configuration search method to
optimize this search process, as shown in Figure 11.

Our searching method is divided into four steps. First,
we reduce the elastic block version of each kernel. We only
focus on the kernels that have performance degradation
within the specified threshold. In this paper, we set the
threshold to 20%, because the average makespan reduction
is about 25%. Second, for a version pair of a kernel pair,
we determine the kernel’s persistent block number based
on resource usage. After the TC kernel’s blocks reserve
some resources, we calculate the possible CD kernel’s block
number based on resource slack. If the possible persistent
block number is less than half of the optimal block number,
we skip the co-running performance test. This is because
a kernel’s performance is almost halved when the possible
persistent block number is half of the optimal one. Third,
we consider the register allocation optimization method to
enlarge the kernels’ parallelism. As discussed in Section 5.3,
we could only use the register allocation method to launch
one more block on the SM. Fourth, if we do not gain the
parallelism using the CD kernel’s halved version while
launching more than half the optimal block, we no longer
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Load_ratio = Xcd / Xtc (%)
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Fig. 12: The duration of co-running two kernels.
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Fig. 13: The kernels’ solo-run duration prediction errors.

perform the test with the quartered version. This is because
the halved version already launches enough blocks.

The above searching method also supports cudnn ker-
nels. The only difference is that cudnn kernels only have
the original version. Moreover, each kernel pair requires
four searches on average with the search method. Through
the above configuration pair search, ISPA identifies the
optimal co-running configuration pairs for mainstream TC-
CD kernel pairs, and records their makespan reduction.

6.4 Duration prediction models

After we locate the optimal configurations for the kernel
pairs, we need to consider the co-running decision for the
runtime kernel scheduling. Equation 8 shows the through-
put gain of a kernel pair. As observed, the kernels’ co-
running gain is determined by the solo-run durations of two
kernels and the co-running duration of two kernels. There-
fore, We need to construct the duration prediction models
for these three durations for making runtime scheduling
decisions to maximize the throughput.

Throughput gain = Tseq − Tcolo = T1 + T2 − Tcolo (8)

For the kernel’s solo-run duration prediction, previous
works [9], [22] choose Linear Regression from various pre-
diction models. We also choose LR as the duration pre-
diction model due to its high precision. The inputs of LR
models are the kernel’s grid dimensions, and the output
is the kernel’s solo-run duration. For the kernel pair’s co-
running duration prediction, the models proposed by previ-
ous works could not provide accurate duration predictions.
This is because these models work in cases where the kernel
runs exclusively on the SM. Multiple kernels’ blocks now
could run in the SM simultaneously.

To construct a model for the kernel pair’s duration
prediction, we need to find a new model for the ker-
nels’ co-running duration. Previous works may rely on the
hardware counters for duration prediction. However, since
performance counters in real-world GPUs are not available
at runtime, we could not predict the kernels’ co-running
duration with the hardware counters. Therefore, we try to
study the co-running duration through extensive profiling.

Theoretically, the co-running duration could only be
effected by two kernels’ load. These two parts correspond
to the original time of TC kernel and CD kernel, and we
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Fig. 14: The kernel pairs’ co-running duration prediction
errors.

use Ttc and Tcd to represent them. To simplify the co-
running duration modeling from two variables, we then
define a metric LoadRatio as LoadRatio = Tcd/Ttc. Based
on that, our profiling experiments could be divided into two
parts: changing load ratio with fixed TC kernel’s load, and
changing TC kernel’s load with fixed load ratio.

For the first experiment, we fix the TC kernel’s load, i.e.,
with static Ttc, and model the kernel pair’s duration with
CD kernel’s different loads, i.e., a changing Tcd. Figure 12(a)
shows the kernel pair’s duration of the tgemm-fft. The x-
axis is the load ratio; and the y-axis is the kernel pair’s co-
running duration normalized to the Ttc. From the figure, the
duration fits a two-stage linear regression model.

For the second experiment, we fix the load ratio, i.e.,
with static LoadRatio, and model the kernel pair’s dura-
tion with TC kernel’s different loads, i.e., a changing Ttc.
Figure 12(b) shows the duration curves with random load
ratios. The x-axis is the TC kernel’s load, and the y-axis is
the kernel pair’s duration. From the figure, the kernel pair’s
co-running duration has a linear relationship with the TC
kernel’s original duration while the load ratio is fixed.

While the kernel pairs with cuconv and other CD kernels
also show similar profiling results, we have two observa-
tions. First, the kernel pair’s co-running duration shows
a two-stage linear regression model, if the TC kernel’s
original duration is fixed. Second, when the load ratio is
fixed, the kernel pair’s co-running duration has a linear
relationship with the TC kernel’s original time.

Therefore, we could predict the kernel pair’s duration
in three steps. 1) we predict the TC kernel and CD kernel’s
original time using LR models, which are Ttc and Tcd. 2)
we compute the LoadRatio. 3) we predict the kernel pair’s
duration using the duration models in Figure 12.

We randomly generate the workload to investigate the
prediction accuracy of the duration models. Figure 13 shows
the prediction error of these single kernels prediction error.
Index 1 - 15 represents the kernel from Parboil, while index
16 - 19 represents the tgemm − 1, tgemm − 2, cuconv − 1,
and cuconv − 2. The predicted running time differs from
the actual value by 2.1% on average and 6.1% at most.
Therefore, Tacker is able to use linear regression to predict
the kernels’ solo-run durations. We also evaluate the kernel
pairs’ two-stage LR model’s prediction accuracy. Figure 14
shows the prediction accuracy. Index 1 - 15 represents the
kernel pairs with tgemm, while index 16 - 30 represents the
kernel pairs with cuconv. These LR models achieve an error
rate of 3.7% on average and 8.5% at most.

6.5 Online scheduling decision

While the offline strategy maker locates the optimal co-
running configurations and constructs the duration models,
the online scheduler makes kernel co-running decisions at
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the runtime. The applications in the datacenter could be
categorized into TC tasks and CD tasks. TC tasks contain
TC kernels, and may contain CD kernels. CD tasks only
contain the CD kernel. Since the kernels in a task have
dependencies, we only focus on the co-running of TC kernel
and CD kernel from different tasks in this paper.

The online scheduler maintains two kernel queues: the
TC kernel queue and the CD kernel queue. When the tasks’
kernels enqueue, the scheduler also saves these kernels’
dependencies. Based on these kernel dependencies and
the kernel queues status, the scheduler performs online
scheduling as follows.

First, the online scheduler identifies the possible TC-
CD kernel pairs at the moment based on the kernels’ de-
pendencies. Second, the scheduler predicts the durations of
these kernel pairs. Based on these durations, the scheduler
then calculates the throughput gain of these kernel pairs
and chooses the kernel pair with the largest one for kernel
scheduling. Third, if there is no possible TC-CD kernel pair
for this moment, the kernels are scheduled to run with the
persistent block mode in sequence.


ThreadTC ∗ blk num + ThreadCD ∗ 1 < THREADlimit

SharedTC ∗ blk num + SharedCD ∗ 1 < SHAREDlimit

RegTC ∗ blk num + RegCD ∗ 1 < REGlimit

(9)

If some CD kernels have not been profiled with the
offline customizer, the scheduler determines the co-running
based on resource usage. If a possible TC-CD kernel pair
satisfies the condition in Equation 9, one kernel could launch
at least one block after the TC kernels’ blocks launch.
Therefore, the scheduler would schedule these two kernels
to co-run for better throughput.

7 EVALUATION

In this section, we first evaluate ISPA on the overall through-
put, which enjoys the two hardware’s parallelism. White-
box TC kernels and black-box cudnn kernels are both con-
sidered. Second, we evaluate the ideal makespan reduction
of the kernel pairs. Third, we will evaluate the makespan
reduction for multiple cudnn internal kernels. Fourth, we
will evaluate our system on the scheduling scenarios with
various tasks. Finally, we discuss the performance difference
between cudnn kernels and tgemm kernels, and the over-
head of ISPA is discussed in detail.

7.1 Implementation
To evaluate ISPA method, we implement the source-to-
source compiler and online kernel scheduler. We have de-
scribed our source-to-source compilation methods in Sec-
tion 5. The source-to-source compiler first converts all ker-
nels to the PTB version and provides possible elastic block
versions. After that, a dynamic-link library is created for on-
line invocation. At runtime, the kernel scheduler maintains
two kernel queues: TC kernel queue and CD kernel queue.
Besides, the kernel scheduler maintains a state table for
each running task. All kernels have three states in the table,
which are waiting, ready and complete. While the kernel
scheduler schedules a kernel on the SM, it sets the kernel’s
state as ready. The scheduler then sets the next kernel’s state
as ready. At each moment, the scheduler only considers the
ready kernels for scheduling.

TABLE 7: Evaluation specifications.

CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

GPU NVIDIA RTX 2080Ti (68 SMs, 544 Tensor Cores)

OS Ubuntu 16.04.5 LTS (kernel 4.15.0)

Inference system Caffe 1.0 [41]

Software
GPU Driver Version: 450.51;

CUDA Version: 10.0, CUDNN Version: 7.5

7.2 Experimental setup

Benchmarks. We choose five commonly used DNN in-
ference services [42] as the Tensor Core tasks, which are
Resnet50, RexNext, VGG16, Inception, and Densenet. Since
there are white-box TC kernels and black-box cudnn ker-
nels, we distinguish DNN inference service with cudnn
version and tgemm version. For example, Resnet50-C
is configured with cudnn kernels, and Renset50-T uses
im2col + tgemm kernel to replace the cudnn convolution
kernel. We use all the fifteen tasks from Parboil [35] as the
CUDA Core tasks, which include various GPU tasks from
different domains. TC tasks contain both TC kernels and CD
kernels, while CD tasks only contain CD kernels. We do not
choose other TC tasks from the benchmark suite because
mainstream benchmarks do not have the tasks containing
TC kernels. Besides, the batch sizes are set as 32.

Hardware and software. The experiments are carried out
on a server equipped with one Nvidia GPU RTX 2080Ti. The
elaborate setups are summarized in Table 1. Note that ISPA
does not rely on any hardware features of 2080Ti and is easy
to serve on other GPUs that integrate Tensor Cores.

7.3 Overall throughput

In this subsection, we evaluate ISPA’s effectiveness in max-
imizing the throughput. We compare ISPA with CUDA
stream. The throughput is the task number completed over
a period of time.

Figure 15 shows the system-wide throughput improve-
ment with ISPA for tgemm-based task pairs compared with
CUDA stream. As observed from this figure, ISPA improves
the throughput in all the 5 * 15 = 75 co-location pairs. ISPA
increases the throughput by 15.3% on average and up to
40.3% (ResNext and lbm). ISPA improves the through-
put, because it solves the resource contention between co-
running kernels. This allows ISPA to explore the parallelism
of the two hardware. On the contrary, although CUDA
stream is designed to co-running kernels, it could not utilize
the intra-SM parallelism due to resource contention.

Figure 16 shows the system-wide throughput improve-
ment with ISPA for cudnn-based task pairs. As observed
from this figure, ISPA improves the throughput in all the
5 * 13 pairwise co-location task pairs. We do not choose
pns and stenc for experiments because these two kernels
could not gain throughput improvement while co-running
with cudnn kernels. ISPA increases the throughput by 7.1%
on average and up to 15.6% (ResNext and mrif ). ISPA
improves the throughput because of the same reason as the
tgemm-based task pairs. Since ISPA could solve the resource
contention between kernels, it could exploit the parallelism
between two hardwares.

Observed from Figures 15 and 16, we find that the kernel
pair with the same DNN service have different throughput
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Fig. 15: The throughput improvement of ISPA normalized to that of CUDA stream (tgemm-based services).
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Fig. 16: The throughput improvement with ISPA normalized to that of CUDA stream (cuconv-based services).
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Fig. 17: The active timelines of Tensor and CUDA Cores.

improvements for different CD tasks. While VGG16-T has
an makespan reduction of 38.4% with mrif , it only has
5.3% with sgemm. The VGG16-C also has similar results
for mrif and sgemm. This difference comes from the CD
task’s different demands for the memory system, which
includes the memory bandwidth, the bus bandwidth, etc.
Therefore, compute-intensive CD tasks could enjoy a high
co-running speepdup with cudnn kernels, while that of
memory-intensive CD tasks are relatively low. Nonetheless,
a large number of CD tasks could get throughput improve-
ment, which demonstrates the effectiveness of ISPA.

We can also observe that the networks have throughput
improvement differences. While ResNext-T increases the
throughput by 17.2% on average, Densenet-T improves the
throughput by 12.0%. This difference comes from the differ-
ent network features due to the network design. Densenet
introduces many small matrix multiplications compared
to other networks. The small matrix multiplication’s short
running time leads to the little potential for hardware par-
allelism. Besides, the small matrix multiplication may not
occupy all the SM. In this case, CUDA stream could also
enjoy the task parallelism, although it could not take ad-
vantage of two hardware’s parallelism. Nevertheless, ISPA
improves the GPU throughput on all the networks.

To better understand why ISPA performs better than
CUDA stream, as an example, Figure 17 shows the execution
trace if TC task Resnet50 and CD task fft with ISPA and
CUDA stream. In Figure 17, the first row represents the
Tensor Core active time, and the second row represents the

CUDA Core active time. In these two rows, we use blue
color to represent the co-running time. As shown in the
figure, these color bars demonstrate that ISPA utilizes two
hardware’s parallelism and CUDA stream could not. We do
not present the results of the kernel pair with cudnn kernels
due to page limitations, which have similar experimental
results. Since ISPA could take advantage of these two hard-
ware’s parallelism, it improves the system-wide throughput.

We also collect the increased duration of each appli-
cation. The experimental results show that the duration
of each application increases by an average of 56.3%.
The increased duration comes from two reasons. First, the
makespan of co-running two kernels is longer than each
kernel’s solo-run duration. Second, when there is no co-
running opportunity due to dependencies, the scheduler
will try to launch the prerequisite kernel to create the co-
running opportunity. This changes the kernel launch order.

7.4 Final kernel-level makespan reduction

This section proves the final makespan reduction of ISPA
after the offline strategy customization. As shown in fig-
ure 18, all the kernel pairs with tgemm have a makespan
reduction of 21.3% on average and at least 9.1%. Likewise,
all the kernel pairs (except pns and stenc) with cuconv have
a makespan reduction of 10.1% and at least 6.4%. These
improved makespan come from the intra-SM parallelism.

The co-running experiments continue from Section 5 to
Section 7, where there are three optimization techniques
and one offline profiling method. Specifically, the persistent
block first solves the thread slot contention. Six CD kernels
(cp, lbm, mrif , mriq, regtil, spmv) have the best makespan
reduction when they co-run with the original tgemm ker-
nel in persistent block mode. Eight CD kernels (cp, cutcp,
fft, mrif , mriq, regtil, sgemm, spmv) gain the makespan
reduction while co-running with the cuconv kernel.

Secondly, the elastic block solves the shared memory
contention, which comes from the memory system sharing.
Six CD kernels (bfs, cutcp, fft, sgemm, stenc, tpacf )
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Fig. 18: The final makespan reduction at the kernel level.
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Fig. 19: The throughput of ISPA with multiple tasks.

achieve the best performance while co-running with the
halved block version of tgemm kernel. Three CD kernels
(histo, img, pns) gain the largest makespan reduction while
they are also elastic block versions. Besides, five CD kernels
(bfs, histo, img, lbm, tpacf ) have improved makespan
reduction while co-running with cuconv kernel after they
are transformed to elastic block version. Since elastic block
could provide the kernel with fine-grained shared memory
usage, two co-running kernels could co-exist on the SM.

Third, the register allocation method could support
launching one more block on the SM, which increases
the parallelism potential. Due to the fine-grained register
allocation, four CD kernels (cp, cutcp, mrif , mriq) have
further improved makespan reduction while co-running
with cuconv kernel. This indicates that register allocation
could exploit the two computing units’ parallelism.

Therefore, three methods could solve the three resource
contention on the SM for the co-running kernels. Offline
strategy customizer searches for the best co-running config-
urations, which bring the best makespan reduction.

7.5 Cudnn kernels
As described in Section 6.1, five DNN models only use seven
cudnn internal implementations when they are configured
with BS as 32 and 16. The first and second cudnn internal
implementation is comprehensively discussed in the above
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Fig. 20: The final makespan reduction of T 2 to T 4.
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subsection. We also apply the three resource management
techniques and one offline profiling method on the re-
maining five cudnn internal implementations. The relative
makespan reduction are shown in Figure 20 and 21.

As observed, all the kernel pairs gain the improved
makespan reduction, though the internal implementations
have different resource usage. All kernel pairs have a
makespan reduction of 9.2% and max speedup of 25.5%.
From these two figures, two internal implementations (T 2
and T 5) have relatively low makespan reduction. This is
because they require all the shared memory, CD kernels
having shared memory demand have no makespan reduc-
tion with them. Besides, two internal implementations (T 3
and T 4) have higher memory resource slack than the other
two implementations (T 6 and T 7). That brings the higher
speedup of them than the other two implementations.

7.6 Beyond pair-wise co-locations
To evaluate the robustness of ISPA in more complex co-
locations scenarios, we pick the subsets of CD tasks and
co-locate them all with the five TC tasks. The CD task sets
include three five-task subsets, two ten-task subsets, and one
task set with all the CD tasks. While the kernels are sorted
by name, we randomly select the first five tasks, middle five
tasks, last five tasks, first ten tasks, and last ten tasks to form
the task set. Figure 19 shows the system-wide throughput
improvement with ISPA in these scenarios.

ISPA improves the system throughput by 16.0% on av-
erage and 26.2% at most, similar to previous results. This is
because although there are more tasks for co-running, their
co-running still relies on two hardware’s parallel usage. The
scheduler is only responsible for choosing the co-running
candidate, and has no impact on the co-running configu-
rations. For these tasks, they only perceive their execution,
even when they are in parallel with another type of task.

7.7 cuconv vs. im2col+tgemm
In the evaluation, we conduct the experiments with DNN
services based on two different convolution methods. The
first one is the cuconvolutionForward(), the second is the
im2col kernel and tgemm kernel [33], [34]. These two meth-
ods may have performance differences. Figure 22 shows
the normalized performance of im2col + tgemm imple-
mentation over cuconvolutionForward() implementation
in Resnet50 with BS 32. As shown, the performance gap
between the two implementations is less than 14% for 43.3%
of the convolution kernels. By only transforming the kernels
with the low performance gap, the entire application has
less than 2% performance loss after the transformation. We
also choose the tgemm as a performance setup for two
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Fig. 23: Throughput improvement of ISPA (caffe 2.0).
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Fig. 24: Throughput improvement of ISPA (pytorch).

reasons. First, we prove our resource management methods’
effectiveness through white-box TC kernel and white-box
CD kernel co-location. Second, there are many DNN mod-
els that rely on the GEMM operation directly, which also
motivates our choice.

7.8 Inference system
The above experiments are based on Caffe 1.0, which seems
a bit old. We also conduct experiments on other inference
systems. We choose Caffe 2.0 and Pytorch to implement our
ISPA system. Figure 23 and Figure 24 show the experimental
results of Caffe 2.0 and Pytorch. Results of two DNN models
are shown due to the tight space.

Since Pytorch heavily relies on cudnn kernels to improve
performance, we configure Caffe 2.0 with the tgemm-based
convolution method. As observed from Figure 23, ISPA
improves the throughput by 14.7% on average (up to 39.4%).
By comparing Figure 23 and Figure 15, ISPA improves the
throughput of all co-locations in a similar way. This is
because the optimization of Caffe 2.0 compared to Caffe
1.0 mainly focuses on four aspects. These aspects include
distributed training, mobile deployment, quantized com-
putation, and vast-scale applications. However, these four
aspects do not affect kernel scheduling and optimization.
Therefore, Caffe 2.0 and Caffe 1.0 have similar results.

As shown in Figure 24, ISPA increases the throughput
by 6.9% on average (up to 15.4%). By comparing Figure 24
and Figure 16, ISPA also improves the throughput of all co-
locations in a similar way. This is because Pytorch heavily
relies on cudnn kernels to accelerate the model inference.
cudnn kernels could serve mainstream operators in DNN
models. DNN models may have similar experimental results
on different inference systems. For example, Resnet50 of
BS 32 needs about 13 ms to complete the computation
under Caffe and Pytorch, which is the same result published
by TensorFlow [43]. Therefore, ISPA can improve system
throughput in other inference systems.

7.9 Overhead
Our overhead comes from the offline strategy customizer,
which includes the cudnn kernel’s profiling, white-box ker-
nels’ optimal persistent block number determination, and
the optimal configuration pair for kernel pairs.

As for the cudnn profiling, we only need to profile each
DNN service once to perceive their internal implementation,
which generally takes several seconds. If there are new
internal implementations, we need to update the table that
stores the cudnn internal implementations. We then create
the new TC-CD kernel pairs with the new cudnn kernel. As
for the white-box kernels’ optimal persistent block number,
ISPA could locate the optimal persistent block number in
four profiling steps, which took 50ms on average.

As for the kernel pair’s optimal configuration pair, we
reduce the profiling overhead through four optimization
steps. Therefore, each kernel pair need an average of four
profiling steps, which takes 400 ms on average. Besides,
since there are limited TC kernels for nowadays tasks, the
search overhead is mainly decided by the CD kernel num-
ber. Current deep learning frameworks generally have tens
of operators, indicating that ISPA’s overhead is acceptable.

8 CONCLUSION

This papers bridges the research gap of improving the uti-
lization of Tensor Core enabled GPU by proposing ISPA. A
GPU kernel often either uses Tensor Cores or CUDA Cores,
leaving another processing unit idle. ISPA proposes persis-
tent and elastic block to solve thread slot and shared mem-
ory contention, and also adopts register allocation methods.
Based on these methods, ISPA uses the compilation stage
and the runtime schedule to co-locate TC kernels and CD
kernels to exploit the intra-SM parallelism. Our experiments
show that the throughput of ISPA outperforms existing co-
location based solutions by 15.3% for white-box workloads
and 7.1% for CUDNN-based workloads.
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