
Exploiting Intra-SM Parallelism in GPUs via
Persistent and Elastic Blocks

Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen Leng, Minyi Guo
Department of Computer Science and Engineering, Shanghai Jiao Tong University Shanghai, China

{zhaohan miven,weihao}@sjtu.edu.cn, {chen-quan,zhao-jieru,leng-jw,guo-my}@cs.sjtu.edu.cn

Abstract—Emerging GPUs have multiple Streaming Multipro-
cessors (SM), while each SM is comprised of CUDA Cores and
Tensor Cores. While CUDA Cores do the general computation,
Tensor Cores are designed to speed up matrix multiplication
for deep learning applications. However, a GPU kernel often
either uses CUDA Cores or Tensor Cores, leaving the other
processing units idle. Although many prior research works have
been proposed to co-locate kernels to improve GPU utilization,
they cannot leverage the Intra-SM CUDA Core-Tensor Core
Parallelism. We therefore propose Plasticine to exploit the intra-
SM parallelism for maximizing the GPU throughput. Plasticine
involves compilation and runtime schedule to achieve the above
purpose. Experimental results on an Nvidia 2080Ti GPU show
that Plasticine improves the system-wide throughput by 15.3%
compared with prior co-location work.

Index Terms—Tensor Core, Scheduling system, Throughput

I. INTRODUCTION

Many emerging applications (e.g., physical simulation [1],
neuroscience [2], deep learning [3]) are compute demanding,
and GPUs are widely adopted to provide such computational
power. For deep learning applications that heavily rely on
matrix multiplication operations, Nvidia introduces Tensor
Cores to speed up matrix multiplication since Volta architec-
ture [4]–[6], and Tensor Cores could only perform the matrix
multiplication task. A GPU program can utilize the Tensor
Cores by invoking the corresponding APIs provided in CUDA
9.0 or later [7]. Without the specific APIs, legacy deep learning
applications and other applications that do not use matrix
multiplication cannot utilize the Tensor Cores.

Figure 1 shows the hardware design of a streaming mul-
tiprocessor (SM) in the current GPUs. In general, a GPU
has multiple SMs (For instance, an Nvidia V100 GPU has
80 SMs), and the kernels are scheduled to run on the SMs.
As shown in this figure, CUDA Cores and Tensor Cores
are independent processing units, while they share the entire
memory stack in the SM. CUDA Cores are used to do the
general-purpose operation, and Tensor Cores are used to speed
up matrix multiplication.

In general, a GPU kernel is executed in the granularity of
warps (a warp has 32 threads), and an SM can run multiple
warps simultaneously [5]. When the data and the computing
resources of a warp are ready, it starts to run. Therefore, if two
ready warps use Tensor Cores and CUDA Cores, respectively,
they could utilize two hardware’s parallelism. However, as
shown in the left SM of Figure 1, the current GPU launches

Quan Chen and Minyi Guo are the corresponding authors.

Warp scheduler

Register file

L1 Texture Shared…

SM

…

Block scheduler
GPU

Kernels queue

Issued
blocks

Stream

Plasticine

Tensor
Cores

CUDA
Cores

Warp scheduler

SM
Issued
blocks

CUDA
Cores

Tensor
Cores

…

Register file

L1 Texture Shared…

Fig. 1: Difference between Plasticine and prior work.

all the blocks of a kernel (a block has multiple warps) to
the SM before the blocks of other kernels. While a single
kernel either only uses CUDA Cores or mainly uses Tensor
Cores, one computing resource is wasted. (Tensor Cores need
insignificant help from CUDA Cores, such as addressing.)

This paper targets the private datacenter scenario, where
the source codes of all the GPU applications are available,
and these applications can be profiled offline as many prior
works [8]–[13]. In private datacenters, multiple users submit
various applications to the GPUs concurrently. For instance,
deep learning applications that use Tensor Cores and scientific
applications that use CUDA Cores may run on the same
GPU [8], [9], [14], [15]. In this case, if we schedule the blocks
of the kernels as shown in the right SM of Figure 1, CUDA
Cores and Tensor Cores can be used simultaneously, and the
throughput can be greatly improved. Therefore, we propose
Plasticine to exploit the intra-SM CUDA Core-Tensor Core
parallelism, by carefully scheduling the blocks in the kernels
of the co-located applications.

Besides Plasticine, there are prior research works on co-
locating multiple GPU applications to improve GPU resource
utilization [8], [9]. For instance, Baymax [8] and Laius [9]
co-locate GPU applications to improve the utilization while
ensuring the low latency of high-priority applications. They
either re-order the GPU task invocations or adjust the SM
allocations between the GPU kernels, based on the NVIDIA
Multiple Process Service (MPS) [16] or CUDA stream [17].
As shown in the left SM of Figure 1, both MPS and CUDA

赵涵

赵涵

stream techniques operate at the kernel level. Only when a
kernel has not used up the resources in an SM, another kernel’s
thread block can be scheduled on the SM. Therefore, the
kernels generally run sequentially on an SM. They are not able
to exploit the intra-SM parallelism between CUDA Cores and
Tensor Cores.

There are three main challenges that have to be resolved in
Plasticine, without modifying the GPU hardware. Challenge-
1: the block scheduling algorithm is provided by the hardware
driver, which leads to the thread slots contention on the SM.
In this case, a mechanism is required to schedule the blocks
of different kernels to an SM concurrently. Challenge-2: the
number of registers and the size of shared memory in an SM
are limited (Figure 1). A block cannot be launched when the
current blocks already take all the registers or shared memory
space, even if there are free thread slots. A method is required
to tune a block’s memory resource usage to enable the intra-
SM parallelism. Challenge-3: A runtime scheduling strategy
is required to carefully adjust the co-running kernels’ block
setup to maximize the system-wide throughput.

Plasticine involves compilation and runtime schedule to
tackle the three challenges. Specifically, Plasticine adopts
persistent block to solve GPU kernels’ unnecessary thread
slots occupation. Persistent block enables multiple kernels’
block residing on the SM, which achieves similar block-
level scheduling using the kernel-level interface (Challenge-
1). Moreover, Plasticine discovers that the GEMM task’s block
size is adjustable. A smaller block size brings less shared
memory and registers usage. Based on this insight, Plasticine
proposes an elastic block technique to solve the kernels’ mem-
ory resource contention (Challenge-2). Using the persistent
and elastic block, Plasticine provides several versions for each
GPU kernel. Finally, Plasticine uses an online-offline collabo-
rative method to make scheduling decisions (Challenge-3). In
the offline, Plasticine searches the optimal configurations for
mainstream kernel pairs and records their overlap rates. When
real-system applications arrive randomly, Plasticine makes co-
running decisions based on offline information and online
queue status to maximize the system throughput.

The main contributions of Plasticine are as follows:
• Comprehensive analysis of the intra-SM CUDA Core-

Tensor Core parallelism. We identify the factors that
impact the CUDA Core-Tensor Core parallelism. The
analysis motivates the design of Plasticine that maximizes
the system-wide GPU throughput with co-location.

• The design of the persistent and elastic block. Adopt-
ing this technique, we can adjust the number of blocks
from each kernel and the resource usage of each thread
block at kernel co-location.

• The pure software implementation without hardware
modification. Plasticine is applicable for current in pro-
duction GPUs to improve resource efficiency.

We evaluate Plasticine on an Nvidia 2080Ti GPU. Our
experimental results show that Plasticine improves the system-
wide throughput by 15.3% on average, and up to 40.3%
compared with prior work.

II. RELATED WORKS

Co-locating applications in datacenters has been an active
research area because it can improve the utilization. There are
two main directions about the tasks co-location: throughput
improvement and quality of service management.

There are prior works focus on improving the throughput
of the GPU system [18]. Some works improve the throughput
by focusing on the scheduling mode, and other researches
target the resource management. For example, SMK [14]
enables block-level scheduling by adding the function of
block preemption in the GPU. Maestro [19] is proposed to
change the multitasking mode for better performance on GPUs
dynamically. Besides, Many previous [20], [21] research works
rely on heuristics to manage memory bandwidth to do careful
task scheduling. In addition to the above research, many
jobs [22]–[27] work on the SM management in multitasking
GPUs. These approaches infer the performance impact of SM
allocation based on related metrics. KSM [28] and Themis [29]
predict the slowdown of co-located applications on spatial
multitasking accelerators. Compared with Plasticine, these
works use simulators to validates their ideas’ effectiveness,
which is not supported in in-production GPUs. Besides, they
do not consider the case of two computing units, which makes
them fail to work without perceiving new hardware features.

Quality of service management is also a popular research
direction [30], [31]. With the support of MPS scheduling,
Baymax [8] predicts performance interference among co-
located GPU applications for a temporally shared GPU. Laius
[9] predicts the kernel duration and reorders the kernel on the
spatial multitasking GPUs. TimeGraph [32] and GPUSync
[33] use priority-based scheduling to guarantee the perfor-
mance of real-time kernels. High priority kernels are executed
first if multiple kernels are launched to the same GPU. Since
these works all rely on the MPS [16] scheduling which
is kernel-level scheduling, they could not exploit the two
hardware parallelism. Wang et al. [34] use fine-grained sharing
of SM-internal resources to improve QoS, while FGPU [35]
adopts careful memory isolation using page color to ensure
the performance of applications. All these work mainly focus
on ensuring high-priority applications’ performance, which is
not applicable for pure throughput problems.

Besides these above researches, there are [36]–[40] also
works for microbench’s performance model development for
NVIDIA GPUs. These works are orthogonal to our work.

III. MOTIVATION

In this section, we first validate two processing units’ paral-
lelism. Then, we identify the constraints of existing scheduling
interfaces on co-running tasks, which motivates our work.

A. Background and Experimental Setup

With the development of deep learning, the complexity and
the size of neural networks keep growing. Nvidia integrates
Tensor Cores to deliver better performance for matrix multipli-
cation in DL applications after Volta architecture. Each Tensor
Core performs up to 64 floating points fused multiply-add

TABLE I: Specifications of an Nvidia RTX 2080Ti GPU.

Resource Value Resource Value
Number of SMs 68 Max Threads per SM 1024
Registers per SM 65536 Shared Memory per SM 64 KB

TABLE II: Experimental results of CUDA stream.

TaskA – Tensor Core kernel
T1 T2 Tcolo Overlap Rate

TaskB – CUDA Core kernel
TaskA + TaskA 1 1 2 0
TaskB + TaskB 1 1 2 0
TaskA + TaskB 1 1 1.1 45%

(FMA) operations per clock using FP16 inputs. For instance,
a V100 GPU (Volta architecture) integrates 640 Tensor Cores
in 80 SMs, and an RTX 2080Ti GPU (Turing architecture) [5]
integrates 544 Tensor Cores in 68 SMs. We use an Nvidia
RTX 2080Ti GPU as the experimental platform throughout
this paper. In an SM, the theoretical processing ability of
Tensor Cores is 4X that of CUDA Cores. It is not efficient to
totally waste the computational ability of CUDA Cores, even
if a kernel only uses Tensor Cores. Table I lists the detailed
hardware specification of the experimental platform.

B. Potential Intra-SM Parallelism

Current parallel interfaces (CUDA stream [17] and
MPS [16]) launch all the blocks of a kernel before the blocks
of another kernel. They cannot schedule two blocks that use
different processing units to an SM at the same time. To this
end, we implement two well-tuned GPU kernels (TaskA and
TaskB) to validate whether the Intra-SM parallelism can be
achieved in real-system GPU.

We implement TaskA to be a kernel that performs GEMM
operation based on the Nvidia sample code [7] using Tensor
Cores. We implement TaskB to be a kernel that uses CUDA
Cores. It performs pure computation using registers and does
not perform any memory operations. This eliminates the im-
pact of the memory access contention on experimental results.
Both TaskA and TaskB have 68 blocks with 512 threads in
each block, and they have the same solo-run processing time.
In this case, each block is assigned to an SM, if the task runs
alone on the GPU (The GPU has 68 SMs).

We then run TaskA and TaskB in different co-location
pairs, and collect the makespan of completing the two tasks.
We use the metric Overlap Rate, to measure the degree that
the two tasks are processed in parallel. Equation 1 calculates
the overlap rate of TaskA and TaskB . In this equation, T1,
T2, and Tcolo represent the solo-run time of the first task,
the solo-run time of the second task, and the total makespan
of completing the two tasks at co-location. The overlap rate
ranges from 0 to 50%.

OverlapRate =
T1 + T2 − Tcolo

T1 + T2

(1)

Table II shows the normalized makespan when we run
TaskA and TaskB in different co-location pairs using CUDA
stream. As shown in the table, when two TaskA or two TaskB
co-run, the overlap rate is 0. This is because they use the same

50

40

30

20

10

0

O
ve

rl
ap

 r
at

e
(%

)

bfs cp cutcp fft histo img lbm mrif mriq pns regtilsgemmspmv stenc tpacf

Fig. 2: Overlap rates of co-running CD tasks with the TC task.

TABLE III: Resource usage of tasks.

Task max resi- issued thread shared reg
dent block block slot mem size

GEMM 1 94 25% 100% 50%
bfs 2 6 100% 39.34% 46.88%
cp 7 3 37.25% 0 41.02%

cutcp 8 258 100% 50% 68.75%
fft 8 15 100% 25% 51.56%

histo 1 3 100% 37.5% 40.63%
img 1 10 100% 75% 60.94%
lbm 8 30 100% 0 93.75%
mrif 4 15 100% 0 54.69%
mriq 4 120 100% 0 53.13%
pns 3 3 100% 9.38% 73.83%

regtil 8 15 100% 0 90.63%
sgemm 6 121 100% 4.69% 91.41%
spmv 8 16 100% 0 76.56%
stenc 8 15 100% 12.5% 76.56%
tpacf 3 3 100% 56.25% 58.59%

processing units (Tensor Cores or CUDA Cores). Since the
512 threads of a block in a task already occupy most of the
computing resources it needed, another block queues up.

On the contrary, when TaskA and TaskB co-run, the
overlap rate is 45%. This is mainly because the blocks of
TaskA and TaskB run in parallel on the Tensor Cores and
CUDA Cores. There is potential intra-SM parallelism, if
the co-running kernels use different processing units.

C. Poor Utilization of the Intra-SM Parallelism

We then investigate whether real-system applications can
benefit from the Intra-SM parallelism. In this experiment, we
co-locate an Nvidia official GEMM kernel (used in Nvidia
cutlass [41], [42]) that uses Tensor Cores, with scientific
applications that use CUDA Cores from Parboil benchmark
suite [43]. The two applications are also co-located using the
CUDA stream interface. We refer to the kernel that uses CUDA
Cores as CD task, and the kernel that uses Tensor Cores as
the TC task for easing of description.

Figure 2 shows the overlap rates of the co-located applica-
tions. As shown in the figure, the overlap rates in 4 out of
the 15 co-location pairs are close to 0, and the rest pairs also
have a low rate. The real-system applications are not able to
efficiently utilize the intra-SM parallelism due to the kernel-
level scheduling of CUDA stream. Only when all the blocks
of a task are launched on the SM, and the SM’s resources
are not used up, another task’s blocks could be scheduled on
the SM. The resources include thread slots, registers, shared
memory, etc (Table I). If any blocks of a task are queuing on
the SM or any of the above resources are used up, another
task’s blocks could not be scheduled on the SM.

Offline

Online

Plasticine runtime system

PTB

VER0

VER1

PTB

VER0

VER1

VER0

PTB

Source-to-source compiler Offline strategy customizer

Online scheduler

ORI

PTB

VER0

VER1

Stream 0

Stream 1

VER0

PTB

TC kernel
queue

CD kernel
queue

GPUTasks

Support Data Dependence TC kernel CD kernelSchedule

Fig. 3: Design overview of Plasticine.

We first collect all tasks’ issued block number per SM and
the maximum resident block number on SM. On this basis,
we profile their resource usage on the SM. As shown in
Table III, all tasks launch a large number of blocks to the
SM, which far exceeds the maximum resident block number.
This prevents the co-running task’s block from launching on
the SM. Besides, 14 of 16 tasks occupy 100% thread slots,
10 of 16 tasks require shared memory, and 13 of 16 tasks use
more than half registers. It is easy to infer that there are severe
contentions in thread slots, shared memory, and registers.

Based on the above analysis, we can conclude that GPU
tasks at co-location are first limited by the kernel-level
scheduling interface, which brings the thread slots contention.
Secondly, GPU tasks still contend for memory resources, such
as shared memory and registers. These contentions lead to the
three challenges elaborated in Section I, and Plasticine has to
solve them to exploit the intra-SM parallelism.

IV. OVERVIEW OF PLASTICINE

Figure 3 shows the design overview of Plasticine that is
comprised of a source-to-source compiler, an offline strategy
customizer, and an online kernel scheduler. The source-to-
source compiler enables approximate block-level scheduling
from the compilation layer, with the current kernel-level
scheduling interface. It transforms GPU kernels to persistent
and elastic block versions for solving the resource contention
(Challenge-1&2). Based on the transformed kernels, the strat-
egy customizer searches the optimal co-running configurations
for the kernel pairs. Based on these scheduling strategies,
the kernel scheduler makes real-time scheduling decisions to
maximize the GPU throughput (Challenge-3). In more detail,
Plasticine works in the following steps.

1) The source-to-source compiler transforms all the kernels
to persistent block mode automatically for resolving thread
slot contention. Moreover, in order to alleviate the memory re-
source contention, the compiler generates several elastic block
versions for TC kernels based on the persistent block version.
The transformation does not seriously hurt the performance
(will be discussed later), but alleviates the resource contention.

2) For the potential pairs of TC kernels and CD kernels,
the offline strategy customizer searches the optimal co-running
configurations, including the block sizes and persistent block

TABLE IV: Resources usage of different kernels.

kernel gemm bfs cp cutcp fft histo img lbm
max blk num 1 2 7 8 8 1 1 8
opt blk num 1 1 4 8 2 1 1 1

kernel mrif mriq pns regtil sgem spmv stenc tpacf
max blk num 4 4 3 8 6 8 8 3
opt blk num 1 2 1 1 2 1 4 3

setups for two kernels. Specifically, the strategy customizer
filters the possible configuration pairs, and selects the one with
the best overlap rate.

3) When multiple GPU tasks arrive in real-time, the online
kernel scheduler classifies the tasks’ kernels into TC kernels
and CD kernels. The online scheduler tracks the running
kernels’ status on the GPU and selects two co-running kernels
from different tasks using different hardware.

Through the above scheduling method, Plasticine improves
the system-wide GPU throughput by exploiting the intra-SM
CUDA Core-Tensor Core parallelism. Note that, since GPU
applications are relatively stable and long-running in a private
datacenter, the overhead of offline customizer is acceptable.

V. PERSISTENT AND ELASTIC BLOCK

We design persistent and elastic block to run the kernels.
Specifically, persistent block solves thread slots contention
with kernel-level scheduling, and elastic block solves memory
resources contention.

A. Resolving Thread Slot Contention

As discussed in Section III, GPU kernels often use a large
number of blocks to hide the stall cycles due to data access,
and the co-running kernels contend for the thread slots. To
alleviate the slot contention, we adopt the persistent block
technique [44] that is capable of adjusting a kernel’s resident
block number on an SM. The persistent block is abstracted as
the block worker, which is always resident on the GPU until
the kernel completes. Each persistent block is responsible for
multiple original blocks’ computation. The optimal persistent
block number is the smallest block number that achieves the
same performance as the original kernel.

For the Parboil benchmarks [43], Table IV shows the
optimal persistent block numbers (“opt blk num”) and the
maximum resident block numbers (“max blk num”) of their
main kernels. The optimal persistent block number is profiled
using the algorithm in Section VI, and the maximum resident
block number is profiled with interface cudaOccupancyMax-
ActiveBlocksPerMultiprocessor(). As observed, there is a gap
between the optimal persistent block number and the maxi-
mum resident block number, not to mention the issued block
number. It is not always necessary to launch a large number
of resident blocks for a kernel to achieve high performance.

Figure 4 shows the overlap rates of the benchmarks with
the GEMM task, after they are transformed to persistent block
mode. As observed, the overlap rates of six benchmarks (cp,
lbm, mrif, mriq, regtil, spmv) increase significantly, while other
benchmarks’ overlap rates are still low.

50

40

30

20

10

0

O
ve

rl
ap

 r
at

e
(%

)

bfs cp cutcp fft histo img lbm mrif mriq pns regtilsgemmspmv stenc tpacf

Fig. 4: Co-running two tasks in persistent block mode.

M

K

K

N

A matrix

B matrix

C matrix
Tilex,y

tile_k

tile_x tile_x

tile_y

tile_y

tile_k

Fig. 5: Matrix mulitplication.

The improved overlap rate comes from two reasons. First,
after the kernels are converted to persistent block mode, they
avoid unnecessary thread occupation. Secondly, the kernels
of the six benchmarks only contend for thread slots with
the GEMM kernel but not for memory resources. The shared
memory and registers required by them can be met even if they
co-run with GEMM task. Whenever they could be scheduled
on SM with GEMM tasks, the overlap rates are high.

B. Alleviating Memory System Contention

While persistent block could resolve the contention on
thread slots, kernels still cannot leverage the intra-SM paral-
lelism if they contend for shared memory or registers seriously
(e.g., fft with the GEMM kernel in Figure 4). While there is
no official shared memory multiplexing tools for co-running
tasks, we focus on the connection between shared memory
size, block size, and performance. We propose elastic block
to solve the memory system contention by elastically
decreasing the block size.

1) Elastic block of TC task: Tensor Cores can only perform
GEMM task, which has been extensively studied. As shown
in Figure 5, a GEMM task generally divides the result matrix
into multiple tiles, and each tile’s computation corresponds to
one block. For each block, shared memory is used to store
the two input matrices. Since the block’s threads load the data
from the global memory to shared memory collaboratively,
Equation 2 shows the shared memory usage of the GEMM in
Figure 5.

Shared mem = (tile x× tile k + tile y × tile k)× sizeof(half)

tile x× tile k ∝ block size

tile y × tile k ∝ block size

(2)

According to Equation 2, when the block size reduces,
the tile size becomes smaller, and the shared memory usage

50

40

30

20

10

0 O
ve

rl
ap

 r
at

e
(%

)

bfs cp cutcp fft histo img lbm mrif mriq pns regtilsgemmspmv stenc tpacf

 Only TC task with elastic block
 All tasks with elastic block

Fig. 6: Co-running two tasks in persistent and elastic block.

reduces. We refer to the kernel with smaller block size as the
kernel’s elastic block version. It is crucial to ensure that using
a smaller block size would not seriously hurt the performance.
We therefore create the elastic block version of GEMM task
by halving the block size.

We collect the two kernel’s performance with GEMM inputs
of the convolutional layers in popular DNNs. Experimental
results show that the performance gap is within 5%. While the
original kernel uses 64KB shared memory, the elastic block
version only uses 36KB shared memory. In this case, we can
sacrifice tiny performance to reduce the shared memory usage,
thus improve intra-SM parallelism. Elastic block reduces
shared memory and register usage by using a smaller
tile. They also reduce the intermediate results on the SM,
which brings more global memory access and possible
performance degradation.

We then verify the effectiveness of elastic block mechanism
using the elastic block version TC task. As shown in Figure 6,
the overlap rates of six benchmarks increase, benefitted from
the shared memory released by the TC task. At the same time,
three benchmarks still have low overlap rates.

2) Elastic block of CD task: Since Tensor Cores could
only deal with the matrix multiplication, the TC task naturally
supports adjusting the block size. While CUDA Cores support
various tasks, it is unknown whether CD tasks can support
the elastic block. We investigate whether the benchmarks
of Parboil [43] have adjustable block sizes. Experimental
results show that 13 of 15 benchmarks support block size
adjustment. The rest two benchmarks with simple modification
also support the block size adjustment.

These GPU tasks have adjustable block sizes because they
all belong to one programming model. While GPU program-
ming divides a large task into multiple subtasks, each block is
responsible for a subtask. The subtask size has a relationship
with the block size, and these subtasks use shared memory
to accelerate memory access. Based on these two features, the
smaller block size means the smaller subtask size, which leads
to a reduction of the shared memory and register usage.

Based on the elastic block of CD tasks, we perform the co-
running experiments with the elastic block version TC task.
As shown in Figure 6, the last three benchmarks (with blue
bars) with low overlap rates exploit the intra-SM parallelism.

It is not safe to directly modify the block size of CD tasks
because there may be correctness issues. Therefore, the elastic
block usage of CD tasks requires programmers to provide
directives on whether their tasks support block size adjustment.
In order to better support elastic block, we also put forward a

PTB

VER0

VER1

PTB

VER0

VER1

VER0

PTB

Performance
degradation

Resource
contention

Available
candidates

Profiling

Best overlap rate

Fig. 7: Identify the optimal configuration pairs.

few suggestions to support elastic block for CD tasks.
• Use standard macro definitions. block size and tile size

are computed from the same macro.
• Calculate the value related to tile size in the code using

the macro instead of constant value usage.

VI. ONLINE-OFFLINE COLLABORATIVE SCHEDULING

The persistent and elastic block enables the possibility to
exploit the intra-SM parallelism. However, in the real-system
scenario, customizing the kernel scheduling strategy from the
co-running applications is still unsolved. Plasticine uses an
online-offline collaborative method to identify the schedul-
ing that results in high system-wide throughput. Specifically,
the offline strategy customizes the scheduling strategy for
mainstream TC-CD kernel pairs. The online scheduler makes
scheduling decisions based on the strategies.

As mentioned in Section V-B, the source-to-source compiler
divides the block size by the power of 2 to create multiple
elastic block versions, and these versions have performance
differences. While the cloud hosts long-running applications,
we select mainstream kernels based on their usage, and
generate all possible TC-CD kernel pairs. For each kernel
pair, we need to collect the co-running performance under
all configuration pairs to find the optimal one. In the above
process, we first need to find the optimal persistent block
number for all kernels with different block sizes. Secondly,
we need to optimize the search process, because the complete
search process has O(N2) complexity.

A. Locating the optimal persistent block setup

As mentioned in Section V-A, the optimal persistent block
number (blkopt) is the minimum block number with the same
performance as the original kernel. We design a searching
method based on dichotomy to locate the optimal persistent
block number for each kernel. The kernel’s original perfor-
mance is used as the baseline for the search process. The
searching range for blkopt is between 1 and the maximum
resident block number. While the max resident block of the
SM is 16, each kernel requires up to 4 profiling steps to search
for the optimal persistent block number.

B. Identifying optimal configuration pairs

After all the kernels have been converted to persistent
block mode, co-running tasks may still suffer from memory
resources contention. The elastic block version of GPU kernels

will mitigate memory resource contention, which may intro-
duce performance degradation. For a TC-CD kernel pair, we
need to search for the optimal one among all configuration
pairs. A complete search requires O(N2) time complexity,
which is unacceptable. We reduce the search overhead from
two aspects, as shown in Figure 7.

First, we reduce the elastic block version of each kernel.
Since the elastic block version may bring performance degra-
dation, we only focus on the kernels that have performance
degradation within the specified threshold. In this paper, we
set the threshold to 20%, because the average overlap rate is
about 20%. When the kernel’s performance drops by 20%, the
kernels’ co-running is hard to improve the throughput. When
we filter the kernels using this threshold, 14 kernels in 16
tested kernels only have one elastic block version.

Second, we make corresponding judgments based on re-
source utilization. If the resource usage of two original per-
sistent block kernels does not exceed the resource upper limit
of the SM, we skip the search of other configuration pairs.
Besides, for a possible configuration pair, if the resource
contention prevents one kernel’s block from launching, we
skip the performance test of this configuration pair.

Based on the above two optimizations, each kernel pair
requires 2 searches on average. Through the above configu-
ration pair search, Plasticine identifies the optimal co-running
configuration pairs for mainstream TC-CD kernel pairs, and
record their overlap rates.

C. Online scheduling decision

While the offline strategy customizer locates the optimal
co-running configurations for mainstream kernel pairs, the
online scheduler makes kernel scheduling decisions for real-
time applications. These applications could be categorized
into TC tasks and CD tasks. TC tasks contain TC kernels,
and may contain CD kernels. CD tasks only contain the CD
kernel. Since the kernels in a task have dependencies, we only
focus on the co-running of TC kernel and CD kernel between
different tasks in this paper.

The online scheduler maintains two kernel queues: the TC
kernel queue and the CD kernel queue. When the tasks’ kernels
enqueue, the scheduler also saves these kernels’ dependencies.
Based on these kernel dependencies and the kernel queues
status, the scheduler performs online scheduling as follows.

First, the online scheduler identifies the possible TC-CD
kernel pairs at the moment based on the kernels’ dependencies.
Second, the scheduler selects the kernel pair with the largest
overlap rate based on the profiling information. These two
kernels are configured with the optimal co-running configura-
tions. Third, If there is no possible TC-CD kernel pair for this
moment, the kernels are scheduled to run with the persistent
block mode in sequence.

ThreadTC ∗ blk num + ThreadCD ∗ 1 < THREADlimit

SharedTC ∗ blk num + SharedCD ∗ 1 < SHAREDlimit

RegTC ∗ blk num + RegCD ∗ 1 < REGlimit

(3)

If some CD kernels have not been profiled with the offline
customizer, the scheduler determines the co-running based on

40

30

20

10

0T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
 (

%
)

Resnet50 ResNext VGG16 Inception Densenet

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

Fig. 8: The throughput improvement with Plasticine (normalized to their throughputs with CUDA stream).

TABLE V: Evaluation specifications.

CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

GPU NVIDIA RTX 2080Ti (68 SMs, 544 Tensor Cores)

OS Ubuntu 16.04.5 LTS (kernel 4.15.0)

Inference system Caffe 1.0 [45]

Software
GPU Driver Version: 450.51;

CUDA Version: 10.0, CUDNN Version: 7.5

resource usage. If a possible TC-CD kernel pair satisfies the
condition in Equation 3, one kernel could launch at least
one block after the TC kernels’ blocks launch. Therefore, the
scheduler would schedule these two kernels to co-running for
better throughput.

VII. EVALUATION

In this section, we first evaluate Plasticine on the overall
throughput, which enjoys the two hardware’s parallelism.
Second, we evaluate the ideal overlap at the kernel level. Then,
we will evaluate our system on the scheduling scenarios with
various tasks. Finally, the overhead of Plasticine is discussed
in detail.

A. Experimental setup

Benchmarks. We choose five commonly used DNN models
[46] as the Tensor Core tasks, which are Resnet50, ResNext,
VGG16, Inception, and Densenet. We use all the fifteen tasks
from Parboil [43] as the CUDA Core tasks, which include
various GPU tasks from different domains. All tasks come in
a Poisson distribution [46]. Besides, we set all the batch sizes
for the DNN models as 32 except VGG16 with 16.

Hardware and software. The experiments are carried out
on a server equipped with one Nvidia GPU RTX 2080Ti.
The elaborate setups are summarized in Table I. Note that
Plasticine does not rely on any hardware features of 2080Ti
and is easy to serve on other GPUs that integrate Tensor Cores.

B. Overall throughput

In this subsection, we evaluate Plasticine’s effectiveness in
maximizing the GPU throughput. We compare Plasticine with
the CUDA stream, in which we issue the tasks without any
modifications.

Figure 8 shows the system-wide throughput improvement
with Plasticine compared with the CUDA stream. As observed

C
om

pu
tin

g

0 10 20 30 40 50
Timeline

C
om

pu
tin

g

(ms)

Stream

Plasticine

Tensor core CUDA core Co-running

Fig. 9: The active timelines of Tensor Cores and CUDA Cores.

from this figure, Plasticine improves the throughput in all the
5 * 15 = 75 pairwise co-location pairs. Plasticine increases the
throughput by 15.3% on average and up to 40.3% (ResNext and
lbm). Plasticine improves the throughput, because it solves the
resource contention between co-running kernels. This allows
Plasticine to explore the parallelism of the two hardware. On
the contrary, although the CUDA stream is designed to co-
running kernels, it could not utilize the two computing units’
parallelism due to resource contention.

We can also observe that the networks have throughput im-
provement differences. While ResNext increases the through-
put by 17.2% on average, Densenet improves the throughput
by 12.0%. This difference comes from the different network
features due to the network design. Densenet introduces many
small matrix multiplications compared to other networks. The
small matrix multiplication’s short running time leads to the
little potential for hardware parallelism. Besides, the small ma-
trix multiplication may not occupy all the SM. In this case, the
CUDA stream could also enjoy the task parallelism, although
it could not take advantage of two hardware’s parallelism.
Nevertheless, Plasticine improves the GPU throughput on all
the networks.

To better understand why Plasticine performs better than
CUDA stream, as an example, Figure 9 shows the execution
trace if TC task Resnet50 and CD task fft with Plasticine and
CUDA stream. In Figure 9, the first row represents the Tensor
Core active time, and the second row represents the CUDA
Core active time. In these two rows, we use blue color to
represent the co-running time. As shown in the figure, these
color bars demonstrate that Plasticine utilizes two hardware’s
parallelism and CUDA stream could not. Since Plasticine
could take advantage of these two hardware’s parallelism, it
improves the system-wide throughput.

50

40

30

20

10

0

O
ve

rl
ap

 r
at

e
(%

)

bfs cp cutcp fft histo img lbm mrif mriq pns regtilsgemmspmv stenc tpacf

Fig. 10: The ideal overlap rate at the kernel level.

30

20

10

0T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
 (

%
)

Resnet50 ResNext VGG16 Inception Densenet

 First 5 Middle 5 Last 5
 First 10 Last 10 All bench

Fig. 11: The throughput of Plasticine with multiple tasks.

C. Kernel-level ideal overlap

This section proves the ideal overlap rate of Plasticine from
the kernel level, which benefits from enabling two computing
units’ parallel usage. As shown in Figure 10, all the kernel
pairs have an overlap rate of 21.3% on average and at least
9.1%, which comes from the two hardware’s parallel usage.

This overlap experiment continues from Section V-B to
Section VII, where there are two optimization techniques and
one offline profiling method. Specifically, the persistent block
first solves the thread slot contention introduced by the CUDA
stream’s kernel-level scheduling. Six kernels (cp, lbm, mrif,
mriq, regtil, spmv) achieve the best performance while running
with the original TC task in persistent block mode.

Secondly, the elastic block solves the memory resource con-
tention, which comes from two hardware sharing the memory
stack. The other six kernels (bfs, cutcp, fft, sgemm, stenc, tpacf)
have the best overlap rate while running with the elastic block
version of TC tasks. For the left three kernels (histo, img, pns),
they also need to be adjusted to the elastic block version to
get the best throughput. With the elastic block, these kernel
pairs’ resource requirements could also be satisfied.

Therefore, the persistent and elastic block solves the re-
source contention of co-running kernels. The offline strategy
customizer searches for the optimal configurations of all kernel
pairs, which brings the best overlap rate.

D. Beyond pair-wise co-locations

To evaluate the robustness of Plasticine in dealing with more
complex co-locations scenarios. We pick the subsets of CD
tasks and co-locate them all with the five TC tasks. The CD
task sets include three five-task subsets, two ten-task subsets,
and one task set with all the CD tasks. While the kernels are
sorted by name, we randomly select the first five tasks, middle
five tasks, last five tasks, first ten tasks, and last ten tasks to
form the task set. Figure 11 shows the system-wide throughput
improvement with Plasticine in these scenarios.

Plasticine improves the system throughput by 15.0% on
average and 24.1% at most, similar to previous results. This
is because although there are more tasks for co-running, their

30

20

10

0T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
(%

)

ResNext Densenet

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

bf
s

 c
p

cu

tc
p

 f
ft

 h

is
to

 i

m
g

 l

bm

 m
rif

 m

riq

 p
ns

 r

et
il

sg
em

m

sp
m

v

st
en

c

tp
ac

f

Fig. 12: The throughput for models with smaller batch sizes.

co-running still relies on two hardware’s parallel usage. The
scheduler is only responsible for choosing the co-running
candidate, and has no impact on the co-running configurations.
For these tasks, they only perceive their execution, even when
they are in parallel with another type of task.

E. Models with smaller batch size

The above experiments all use the default batch size of
each network, which is mostly 32. In this subsection, we also
conduct experiments on the smaller batch size. Due to page
limitations, we only show the results of ResNext and Densenet
with batch size 16. As shown in Figure 12, Plasticine also
achieves throughput improvements in all task pairs. ResNext
increases the throughput by 16.5%, and Densenet increases the
throughput by 11.5%. Although there is slight performance
degradation, Plasticine still has considerable performance im-
provement with the smaller batch size.

F. Overhead

Our overhead comes from the offline strategy customizer.
The customizer first filters the elastic kernels within the per-
formance threshold. While 14 in 16 tasks only have one elastic
kernel, this process generally needs two or three profile steps.
Second, the customizer searches the optimal configuration
pairs for possible kernel pairs. Suppose each kernel pair needs
three profile steps, and each step needs 100 ms, the profiling
overhead for one kernel pair is 300 ms. Since there are
limited TC kernels for current tasks, the search overhead is
mainly decided by the CD task number. Therefore, Plasticine’s
overhead is acceptable.

VIII. CONCLUSION

In this paper, we bridge the research gap of improving the
utilization of Tensor Core enabled GPU by proposing Plas-
ticine. A GPU kernel often either uses Tensor Cores or CUDA
Cores, leaving another processing unit idle. Plasticine proposes
persistent and elastic block to solve resources contention, and
uses the compilation stage and the runtime schedule to co-
locate TC kernels and CD kernels to exploit the intra-SM
parallelism. Our experiments show that the throughput of
Plasticine outperforms existing co-location based solutions by
15.3% on average, and up to 40.3%.

ACKNOWLEDGMENT

This work is partially sponsored by the National Nat-
ural Science Foundation of China (62022057, 61832006,
61632017, 61872240, 62072297) and the Program of Shanghai
Academic/Technology Research Leader (18XD1401800).

REFERENCES

[1] M. J. Harris, “Fast fluid dynamics simulation on the gpu.” SIGGRAPH
Courses, vol. 220, no. 10.1145, pp. 1 198 555–1 198 790, 2005.

[2] J. B. Pezoa, D. Fasoli, and O. Faugeras, “Three applications of gpu
computing in neuroscience,” Computing in Science & Engineering.

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv.

[4] “Nvidia volta gpu architecture,” https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[5] “Nvidia turing gpu architecture,” https://images.nvidia.com/aem-dam/
en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf.

[6] “Nvidia ampere gpu architecture,” https://images.nvidia.com/aem-dam/
en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf.

[7] Nvidia, “tensor core example code,” https://developer.nvidia.com/blog/
programming-tensor-cores-cuda-9/.

[8] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[9] W. Zhang, W. Cui, K. Fu, Q. Chen, D. E. Mawhirter, B. Wu, C. Li, and
M. Guo, “Laius: Towards latency awareness and improved utilization of
spatial multitasking accelerators in datacenters,” in ICS.

[10] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location of
multiple latency-critical jobs for warehouse scale computers,” in HPCA.
IEEE, 2020, pp. 193–206.

[11] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-
agent task management for colocated latency-critical cloud services,” in
HPCA. IEEE, 2020, pp. 167–179.

[12] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ISCA, 2015.

[13] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
in ISCA. ACM, 2013, pp. 607–618.

[14] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel gpu: Multi-tasking throughput processors via
fine-grained sharing,” in HPCA. IEEE, 2016, pp. 358–369.

[15] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and exploiting
flexible task assignment on gpu through sm-centric program transforma-
tions,” in ICS, 2015, pp. 119—-130.

[16] Nvidia, “Cuda mps,” https://docs.nvidia.com/deploy/pdf/CUDA Multi
Process Service Overview.pdf.

[17] “Cuda stream,” https://developer.nvidia.com/blog/
gpu-pro-tip-cuda-7-streams-simplify-concurrency.

[18] F. Liu, W. Zhao, Z. Wang, T. Yang, and L. Jiang, “Im3a: Boosting deep
neural network efficiency via in-memory addressing-assisted accelera-
tion,” in Proceedings of the 2021 on Great Lakes Symposium on VLSI,
2021.

[19] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic resource management
for efficient utilization of multitasking gpus,” in ASPLOS, 2017.

[20] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient and
fair multi-programming in gpus via effective bandwidth management,”
in HPCA. IEEE, 2018, pp. 247–258.

[21] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu
memory system for multi-application execution,” in MEMSYS, 2015.

[22] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case
for gpgpu spatial multitasking,” in HPCA. IEEE, 2012, pp. 1–12.

[23] P. Aguilera, K. Morrow, and N. S. Kim, “Fair share: Allocation of gpu
resources for both performance and fairness,” in ICCD. IEEE, 2014,
pp. 440–447.

[24] Q. Hu, J. Shu, J. Fan, and Y. Lu, “Run-time performance estimation and
fairness-oriented scheduling policy for concurrent gpgpu applications,”
in ICPP. IEEE, 2016, pp. 57–66.

[25] P. Aguilera, K. Morrow, and N. S. Kim, “Qos-aware dynamic resource
allocation for spatial-multitasking gpus,” in ASP-DAC. IEEE, 2014, pp.
726–731.

[26] H. Lee and M. A. Al Faruque, “Gpu-evr: Run-time event based real-time
scheduling framework on gpgpu platform,” in DATE. IEEE, 2014, pp.
1–6.

[27] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, Q. Chen, M. Guo, and
V. J. Reddi, “Asymmetric resilience: Exploiting task-level idempotency
for transient error recovery in accelerator-based systems,” in 2020 IEEE

International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 44–57.

[28] W. Zhao, Q. Chen, and M. Guo, “Ksm: Online application-level per-
formance slowdown prediction for spatial multitasking gpgpu,” CAL,
vol. 17, no. 2, pp. 187–191, 2018.

[29] W. Zhao, Q. Chen, H. Lin, J. Zhang, J. Leng, C. Li, W. Zheng, L. Li, and
M. Guo, “Themis: Predicting and reining in application-level slowdown
on spatial multitasking gpus,” in IPDPS. IEEE, 2019, pp. 653–663.

[30] Z. Li, Q. Chen, S. Xue, T. Ma, Y. Yang, Z. Song, and M. Guo,
“Amoeba: Qos-awareness and reduced resource usage of microservices
with serverless computing,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 399–
408.

[31] K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo,
“Qos-aware and resource efficient microservice deployment in cloud-
edge continuum,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2021, pp. 932–941.

[32] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in ATC, 2011,
pp. 17–30.

[33] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[34] Z. Wang, J. Yang, R. Melhem, Y. Zhang, and M. Guo, “Quality of
service support for fine-grained sharing on gpus,” in ISCA, 2017.

[35] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional gpus: Software-
based compute and memory bandwidth reservation for gpus,” in RTAS,
2019.

[36] Y. Zhang and J. D. Owens, “A quantitative performance analysis model
for gpu architectures,” in HPCA. IEEE, 2011, pp. 382–393.

[37] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,” in
HPCA. IEEE, 2015, pp. 564–576.

[38] W. Cui, M. Wei, Q. Chen, X. Tang, J. Leng, L. Li, and M. Guo,
“Ebird: Elastic batch for improving responsiveness and throughput of
deep learning services,” in 2019 IEEE 37th International Conference on
Computer Design (ICCD). IEEE, 2019, pp. 497–505.

[39] W. Cui, Q. Chen, H. Zhao, M. Wei, X. Tang, and M. Guo, “E 2 bird:
Enhanced elastic batch for improving responsiveness and throughput of
deep learning services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 6, pp. 1307–1321, 2020.

[40] H. Zhao, W. Cui, Q. Chen, J. Leng, K. Yu, D. Zeng, C. Li, and
M. Guo, “Coda: Improving resource utilization by slimming and co-
locating dnn and cpu jobs,” in 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2020, pp. 853–863.

[41] “tensor core example code,” https://github.com/NVIDIA/cuda-samples/
tree/master/Samples/cudaTensorCoreGemm.

[42] Nvidia, “Nvidia cutlass,” https://github.com/NVIDIA/cutlass.
[43] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[44] K. Gupta, J. A. Stuart, and J. D. Owens, A study of persistent threads
style GPU programming for GPGPU workloads. IEEE, 2012.

[45] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[46] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf
inference benchmark,” in ISCA, 2020.

