
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 1

E2bird: Enhanced Elastic Batch for Improving
Responsiveness and Throughput of Deep

Learning Services
Weihao Cui, Quan Chen, Han Zhao, Mengze Wei, Xiaoxin Tang, Minyi Guo

Abstract—We aim to tackle existing problems about deep learning serving on GPUs in the view of the system. GPUs have been
widely adopted to serve online deep learning-based services that have stringent QoS(Quality-of-Service) requirements. However,
emerging deep learning serving systems often result in poor responsiveness and low throughput of the inferences that damage user
experience and increase the number of GPUs required to host an online service. Our investigation shows that the poor batching
operation and the lack of data transfer-computation overlap are the root causes of the poor responsiveness and low throughput. To this
end, we propose E2bird, a deep learning serving system that is comprised of a GPU-resident memory pool, a multi-granularity
inference engine, and an elastic batch scheduler. The memory pool eliminates the unnecessary waiting of the batching operation and
enables data transfer-computation overlap. The inference engine enables concurrent execution of different batches, improving the GPU
resource utilization. The batch scheduler organizes inferences elastically to guarantee the QoS. Our experimental results on an Nvidia
Titan RTX GPU show that E2bird reduces the response latency of inferences by up to 82.4% and improves the throughput by up to
62.8% while guaranteeing the QoS target compared with TensorFlow Serving.

Index Terms—GPUs, DL Serving, Latency, Throughput, Responsiveness

✦

1 INTRODUCTION

D EEP learning is famous for the high prediction accuracy
and has been adopted in many online services that

require short response time (e.g., intelligent personal assis-
tant [1], online translation [2], and interactive photo editor
[3]). GPUs have been proved to be particularly suitable
for these computational demanding deep learning-based
services, especially after the introduction of tensor cores
in Nvidia Volta GV100 GPU architecture for speeding up
neural network processing. It has been reported that GPUs
can speed up the model training by more than 50× CPU [4].
Due to the high computational ability of GPUs, more and
more service providers start to use GPUs to host the deep
learning-based services [5]–[7].

For deep learning-based services, multiple inferences
are often organized and executed in batches, because a
single inference cannot fully utilize all the resources of
a GPU (e.g., the latest Nvidia Titan RTX has 72 SMs).
Table 1 depicts the details about the correlation between
batch size and throughput by profiling the execution of
different deep learning models with different batch sizes.
In Table 1, BS represents the batch size of each model,
Lat represents the latency for processing such a batch, and
Req/s represents the corresponding throughput in the form
of the amount of the inferences processed per second. Three
models are profiled, including Resnet 50, Resnet 101, and
Resnet 152(Res50, Res101, and Res152 in short). In all cases,
the latency and throughput increase with the growth of the
batch size used in processing inference batch. Owing to the
positive correlation between latency and throughput, there

• All the authors are with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China.

TABLE 1: Correlation of batch size, latency, and throughput.

Model Res 50 Res101 Res152

BS Lat Req/s Lat Req/s Lat Req/s

4 6.8 588 11.8 338 17.3 231
8 12.1 661 20.6 388 29.2 273

16 21.5 740. 36.2 441 49.5 323
32 40.1 798 65.4 489 93.7 341

exists a trade-off between latency and throughput. From
a user’s perspective, the priority is processing inference
requests in a smaller batch to get quicker responsiveness.
Nevertheless, the deep learning service providers prefer to
processing larger batches to support the higher load with
the same hardware resources. An efficient batching policy
is needed to retain high throughput while guaranteeing the
quality of deep learning services.

Emerging deep learning serving systems, such as Ten-
sorFlow Serving [8], adopt a CPU-side batching mechanism
to improve the inference processing throughput. Generally,
in most deep learning serving systems adopting CPU-side
batching, inferences are batched to gain high parallelism,
as shown in Figure 1. Batch operations of input data are
performed on the CPU side [8], [9], since the input of a
deep learning network running on GPUs must be stored
in a continuous address space. Then service providers can
configure the maximum batch size s and the maximum
waiting time t of an inference. Either the number of queued
inferences reaches s, or the earliest inference waits for t, the
queued inferences are organized to be a batch. When the
last inference of a batch arrives, the input data of all the
inferences are transferred to the GPU together. The GPU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 2

Preprocess
Preprocess

Preprocess
Preprocess C

PU
→

G
PU

REQ-1
REQ-2
REQ-3
REQ-4
Request

G
PU
→

C
PU

Postprocess
Postprocess
Postprocess
Postprocess

Timeline

Batched Computing

Waiting Time� t

Batch Size� s

Fig. 1: Execution timeline of batched inference requests.

then processes the batched inferences together in a tight-
couple way. After the processing completes, the results of all
the inferences are transferred to the CPU together. Moreover,
only after a batch of inferences returns, the next batch can
be launched. This mechanism works well if the load of the
deep-learning-based service is stable, and s and t are tuned
carefully before the service starts based on the inference
load.

However, online services often experience a diurnal load
pattern. Emerging batching mechanism results in poor re-
sponsiveness at low load and low throughput at high load.
At low load, the response latency of the first inference in
a batch is delayed by at least t (the processing time also
increases due to the batching). At high load, due to the
sequential processing of different batches, GPUs are idle
when copying the input data of the inferences from CPU to
GPU and copying the result of inferences from GPU to CPU.
GPUs are not fully utilized even if the requests queued up
seriously at the CPU side, resulting in the low throughput.

Eliminating unnecessary waiting at low load and over-
lapping data transfer and computation at high load can im-
prove the responsiveness and throughput of deep-learning-
based services. However, if a short maximum waiting time
t is adopted for eliminating the unnecessary waiting, each
batch will have only a small number of inferences. When
the load of the service bursts, the new inferences suffer from
long latency. This is mainly because these new inferences are
not launched to the GPU before the previous batch returns,
even though the GPU is not fully utilized by the small batch
of inferences. Configuring a short maximum waiting time of
inference is not helpful in reducing the latency of inferences
in online services (discussed in Section 3).

The concurrent kernel execution feature [10] of the
current GPUs that allows independent kernels in differ-
ent CUDA streams1 to run concurrently on different SMs
of a GPU can be leveraged to solve the above problem.
We observe that processing multiple inferences in a single
large batch using a single CUDA stream has similar per-
formance with processing these inferences using multiple
streams with smaller batches when scheduled with reason-
able strategies. Therefore, if we can elastically launch mul-
tiple inference batches of different batch sizes to the GPU
when the load bursts, the GPU can be better utilized even
if the short maximum waiting time is adopted. The elastic
batching also enables data transfer-computation overlap,
thus improving the throughput.

Based on this observation, we propose E2bird, a novel
deep learning serving system to improve the responsive-
ness and throughput of online deep learning-based ser-

1. A CUDA stream is a sequence of operations that execute in issued-
order, while operations issued to different CUDA streams execute in
parallel.

vices. E2bird is comprised of a GPU-resident memory pool, a
multi-granularity inference engine, and an elastic batch sched-
uler. The memory pool holds the input data of all the
inferences. Whenever an inference is submitted, its input
data (and other meta information) is directly transferred
into the memory pool. The memory pool enables data
transfer-computation overlap by transferring data in the
backend when the GPU is processing other inferences. The
multi-granularity inference engine provides multiple CUDA
streams that process inference batches of different granular-
ities, thus enabling concurrent kernel execution. The batch
scheduler organizes the inferences in the memory pool into
batches of different granularities elastically and schedules
them to the appropriate workers in the engine. The batch
scheduler can be configured with different scheduling poli-
cies.

Our main contributions are as follows:

• Comprehensive analysis of batch scheduling for
deep learning-based services on GPU. The analysis
demonstrates that emerging batching policies result
in long latencies and low throughput of online ser-
vices.

• A GPU-side inference batching mechanism. We im-
plement a novel GPU-side memory pool that stores
the inputs of all the inferences in the GPU global
memory. It enables transfer-computation overlap and
elastic batching.

• Novel elastic batch scheduling policies. We design
a multi-granularity inference engine, and a corre-
sponding batch scheduler, which consists of two
scheduling algorithms that minimizes the response
latency of inferences while improving the through-
put of services.

Our experimental results on an Nvidia Titan RTX GPU
show that E2bird reduces the response latency of inferences
by up to 82.4% and improves the throughput by up to
62.8% while guaranteeing the QoS target compared with
TensorFlow Serving (hereinafter called the “TF-Serving”)
running with optimized scheduling setup.

E2bird is our follow-up work of Ebird, which has been
published at the 37th IEEE International Conference on
Computer Design (ICCD’19). It is different in the following
aspects from our previous paper:

• E2bird attests to the theoretical benefits of the
GPU resident memory pool. Through this, E2bird
can precisely predict the maximal improvement for
different models, which provides a suggestion when
optimizing the system.

• E2bird exploits several techniques to reduce the
global memory overhead caused by multiple in-
ference workers. E2bird is capable of configuring
the alive workers flexibly in the inference engine by
reusing memory for intermediate results and sharing
the weight parameters between workers.

• E2bird abstracts a scheduling model for guiding
the efficient scheduling. E2bird analyzes the inter-
ference between inference workers by the qualitative
approach.

• E2bird provides a new scheduling policy. The per-
formance of different deep learning models varies

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 3

with the architecture of deep learning models and
GPUs. The new proposed scheduling policy lever-
ages an offline phase to get the best configuration
of the elastic batch scheduler for different models
instead of the coarse-grained scheduling in Ebird.

• E2bird extends the experimental evaluation. E2bird
achieves an improvement of throughput by 9.9%
averagely compared with Ebird.

2 RELATED WORK

In this section, we discuss the state-of-the-art techniques and
their limitations in three aspects.

2.1 Traditional QoS Management on GPUs
There has been a lot of work about traditional QoS manage-
ment on GPUs. Baymax [11] is the first one that identifies
the root causes for QoS violation on GPUs. Baymax [11],
Prophet [12], and Flep [13] focus on using either a runtime
system or a compilation engine to achieve QoS goals at a
software level. With the emerging of MPS [14], Laius [15]
targets eliminating the QoS violation on spatial multitasking
accelerators such as Nvidia Volta GV100 GPU. To get a
generalized solution, the management and scheduling units
in the above previous work are all at the level of kernel func-
tions of GPUs. Scheduling at the level of kernel functions
brings in scheduling overhead for each kernel function,
which is inevitable for deep learning services with too many
kernel functions in it. These systems [11]–[13], [15], where
the end-to-end latency is controlled through API provided
by Nvidia fail to take the deep learning serving properties
into account. However, they all take into account the co-
location of user-facing applications and batch applications
on GPUs, which can be future work for us. Fine-grained
QoS [16] aims to propose QoS mechanisms for a fine-grained
form of GPU sharing. Its key idea is that multiple kernels
share the same SM to improve utilization. Due to no support
of hard preemption and context reset on real hardware, its
implementation is based on the simulator, GPGPU-Sim [17]
instead of real hardware. Hence, the simulation property
makes it unable to apply to current deep learning services.

2.2 Optimizations in Deep Learning Systems
Researchers have made an effort to develop GPU-based
deep learning systems for particular purposes like better
performance [18]–[22]. Some works focus on the optimiza-
tion in mainstream deep learning systems, including Ten-
sorflow [23], Caffe [24], Pytorch [25], and others. Generally,
offering services in datacenters only needs the forward com-
putation of the whole deep learning model training process,
which is implemented but not optimized for serving in the
frameworks mentioned above. Although the accuracy of
the model evaluating, and performance of training are two
keys to deep learning research, the quality of service and
utilization of the full serving system play essential roles in
providing deep learning services.

Many projects [8], [9], [26], [27] provide the capability
of deep learning serving. Clipper [9] is a modular architec-
ture which builds on existing deep learning frameworks.
Clipper introduces techniques including caching, batching,

and adaptive model selection to reduce inference latency
and improve throughput on CPUs and GPUs. To support
frameworks such as Spark [28], Tensorflow [23], and so
on, Clipper adopts to serve the deep learning model in
the CPU-based container. Such coarse-grained management
leads to low GPU utilization. Nexus [26] is another deep
learning serving framework, which focuses on the acceler-
ating on a GPU cluster. Nexus divides the origin whole deep
learning model into fragments of deep learning models.
Then, Nexus uses several batching techniques to guarantee
the QoS target when deploying multiple sub-models to
a GPU cluster. Nexus emphasizes the large service scale.
Tensorflow Serving [8] is the model serving version of
Tenserflow, which provides the mechanisms including load
balance, model versioning, and QoS protection. Tensorflow
Serving provides several batching guides [29] for users to
guarantee the QoS when serving, which will be discussed
detailedly in the rest of this paper. The batching policies
employed in the above frameworks all lie in the CPU-side
batching mechanism where E2bird concentrates to give a
better solution.

2.3 Accelerating Deep Learning Computation
Much work has focused on accelerating the inference of par-
ticular deep learning models. BatchMaker [30], DeepCPU
[31], and GRNN [32] are all specially designed to improve
inference speed for RNNs. Accelerating particular models
depends on particular properties. Therefore, such work is
short of generalization and is not able to figure out the
existing problems for all deep learning models. Some work
uses model compression techniques to reduce the size of the
deep learning model and accelerate its inference. A couple
of developing trends are pruning [33], [34], and low-bit
quantization [35]–[37]. Optimization, like accelerating deep
learning inference, can be regarded as complementary to
E2bird to get better performance.

3 BACKGROUND AND MOTIVATION

In this section, a typical pipeline of deep learning serving
is given out firstly. Then we use experiments to dig out the
existing problems and expound the direction to solve them.

3.1 Typical Pipeline
A typical pipeline of deep learning service includes the
following steps. The serving systems load models, process
inference when receiving the inference requests, and return
corresponding inference results. Simultaneously, the serving
systems update the parameters of models in the background
when older models can not guarantee enough accuracy.

Hence, deep learning serving covers a broad array of
traditional online services and deep learning. Deep learning
serving systems provide modules [8] that service RPC re-
quests to carry out inference using loaded models. In such
modules, QoS, load balance, resource isolation, and high
utilization are fundamental issues, which is similar to tra-
ditional online services. Meanwhile, deep learning models
must be updated basing on the real-time data. Therefore,
deep learning serving systems have some new features,
including model versioning, model loading. In the rest of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 4

Fig. 2: The end-to-end latencies of the inferences with differ-
ent batching policies when the load of the service bursts.

the paper, we focus on the trade-off between QoS and high
throughput for accelerating deep learning serving systems
on GPUs.

3.2 Existing Problems
We investigate the problems of existing deep learning serv-
ing systems for online services with a diurnal load pat-
tern. Without loss of generality, we use TF-Serving as the
representative serving system and use Resnet 152 (Res152
in short), widely used in image classification services, as
the representative network to perform the investigation. To
emulate the pattern, we increase the submit frequency of the
inference requests for every 150 inferences.

Figure 2 shows the end-to-end latencies of the inferences
when different batching policies are adopted in TF-Serving.
In the figure, the shadowed area shows the load variation
of Res152, the x-axis shows the arrival order of the infer-
ences, and the y-axis shows the latencies of the inferences.
“NO Wait” and “OPT Wait” represent the policies that set
the maximum waiting time of an inference request to 0 and
30ms, respectively. The optimal maximum waiting time is
identified according to the official guide of TF-Serving [29].
For all the policies, the maximum batch size is 32, which is
the recommended batch size for Res152 in many research
papers [9]. “Static” policy is similar to “OPT Wait”, except
the batch size is fixed to 32. If there are less than 32
valid inferences in a batch, the batch is padded to have
32 inferences with dummy inferences to better utilize the
tensor cores in GPU.

As observed from Figure 2, NO Wait achieves the short-
est latency when the load is low but suffers from long
latency at the high load that results in the QoS violation.
On the contrary, OPT Wait achieves much shorter latency
at high load but suffers from relatively long latency at
low load. Meanwhile, the static policy always performs
worse than the OPT Wait policy. TF-Serving recommends
the service providers to adopt the OPT Wait batching policy.

To better understand how the batched inferences are
processed on a GPU, Figure 3 presents the trace of pro-
cessing inferences with the OPT Wait policy at high load.
The execution trace is captured with the official profiling
tool nvprof [38] provided by Nvidia. In the figure, “HtoD”
and “DtoH” represent the operations of copying data from
main memory to GPU and from GPU to main memory,
respectively. “Computation” represents the execution of the
kernels.

As shown in Figure 3, the GPU is idle between adja-
cent batches. This is mainly because TF-Serving schedules

Fig. 3: Snapshot of inference processing with OPT Wait.
Inference processing with NO Wait is similar except the
kernels are shorter.

different batches sequentially. Only after the result of the
current batch is transferred to the main memory, the input
data of the next batch can be transferred to GPU. The
scheduling overhead and the data transfer together result
in the large idle gap. This figure also explains the reason
that the NO Wait policy results in long latency at high load.
If NO Wait is adopted, a batch often has a small number
of inferences and cannot fully utilize the GPU. In this case,
the inference requests queued at the CPU side will not be
launched until the previous batch completes even if the GPU
is not fully utilized. The resulted long queueing time is the
root cause of the long latency at high load with the NO Wait
policy. According to the above investigation, the emerging deep
learning serving systems result in the long latency of inferences
and the low processing throughput. The root causes of the two
problems are the long waiting time for batching, the low
GPU utilization due to the sequential processing of different
batches, and the lacking of transfer-computation overlap.

3.3 The Ways to Solve the Existing Problems

A deep learning serving system that maximizes the through-
put while satisfying the QoS target and minimizes the
latency of inferences at low load is required to cater to
the diurnal load pattern. We propose E2bird, an adaptive
deep learning serving system to achieve the above purposes.
According to the above analysis, E2bird should have the
following abilities.

• E2bird should be able to overlap data transfer
and computation to minimize the GPU idle time
between adjacent batches. By keeping the SMs of
a GPU busy, more inferences can be processed at a
high load. However, state-of-the-art systems have no
input pipeline that can deliver data for the next batch
when the current batch is being processed. E2bird
needs to design a software mechanism to overlap the
transfer and computation.

• E2bird should be able to run multiple batches of
inferences concurrently. Sharing computing and
memory is enabled. With this ability, when the load
of the service bursts, the new inferences can be
executed immediately if the GPU is not fully utilized.

• E2bird should be able to organize inferences into
batches of different granularities elastically. This
ability minimizes the waiting time of inferences and
improves GPU utilization. When a GPU is processing
a large batch of inferences, a small batch of inferences
can be launched to utilize the remaining GPU re-
sources and vice versa. State-of-the-art systems (e.g.,
TF-Serving) fix the maximum batch size during the
lifetime of service.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 5

GPU Resident Memory Pool

PCI-e

Host Side GPU Side
User

Requests

CPU

Multi-Granularity
 Inference Engine

Worker

Worker

Worker

Result

Schedule

Idle
 Queue

Elastic Batch Scheduler

Load

E2bird Serving System

Input

Transfer Control

Online Phase

Offline Phase
ProfilerQoS Goal Model

Fig. 4: Overview of E2bird serving system.

4 METHODOLOGY

In this section, we elaborate on the design overview of
E2bird. Figure 4 shows the design overview of E2bird,
a deep learning serving system that is composed of an
offline profiler, a GPU resident memory pool, a multi-granularity
inference engine, and an elastic batch scheduler.

The workflow of the system is divided into two phases.
In the offline phase, essential information for scheduling
is profiled by executing the deep learning models under
different constraints, including QoS goal, GPU platforms
and so on. Then the elastic batch scheduler and multi-
granularity inference engine are configured with the col-
lected information.

In the online phase, the GPU resident memory pool
keeps inputs of inference requests one by one in sequence.
It enables data transfer-computation overlap. The multi-
granularity inference engine maintains multiple workers
that run and return the result to the host independently
and concurrently. The workers are configured for process-
ing inferences in different batch sizes. The elastic batch
scheduler organizes the inferences in the memory pool into
batches of different sizes elastically and assigns them to a
suitable worker, based on the load and the running states
of the workers. The elastic batch scheduler works with two
scheduling algorithms, named N-Ebird and E-Ebird. In the
offline phase, N-Ebird only needs the maximum batch size
allowed for guaranteeing the QoS target. However, E-Ebird
needs extra offline profiling to get the best configurations
of the inference engine under different load for each deep
learning model.

5 GPU RESIDENT MEMORY POOL

In this section, we first discuss the design and theoretical
improvement of the memory pool in detail. Finally, we
validate the reasonability of designing the memory pool.

5.1 Design of GPU Resident Memory Pool

Considering the disadvantages of traditional batching oper-
ations, we design a GPU resident memory pool to replace
the original batching operations on CPU. The GPU resident
memory pool acts as a circular buffer, which holds input
data of different inferences in sequence in a continuous

TABLE 2: Parameters of slot in memory pool.

Parameters Explanation

index Serial ID of inference request
InDevPtr Device address of input
InEvent Input CUDA event

OutCpuPtr Host address of output
OutEvent Output CUDA event

Index
InDevPtr
InEvent
OutCpuPtr
OutEvent

Index
InDevPtr
InEvent
OutCpuPtr
OutEvent

Index
InDevPtr
InEvent
OutCpuPtr
OutEvent

InMutex; InStream; OutStream

Fig. 5: Structure of GPU resident memory pool.

address of GPU’s global memory. The memory pool keeps
allowing transferring individual request input from CPU to
GPU, instead of waiting until the last request in a batch
comes. The memory pool transfers the input data of differ-
ent requests serially in order of arrival. In this way, we can
get the mapping from input to output and return inference
result to the corresponding request.

Figure 5 shows the structure of the memory pool.
InMutex guarantees that only one inference’s input is
transferred at a time. InStream and OutStream are two
CUDA streams that are responsible for communication be-
tween the memory pool and the multi-granularity inference
engine. Requests are also responded through these two
streams. Data in the memory pool are organized in slots.
Each slot mainly contains five components, as listed in
Table 2. In order to transfer input data for an inference,
InStream calls cudaMemcpyAsync and records the cor-
responding InEvent.

Suppose that a worker in the multi-granularity inference
engine needs to process four slots input data (index from 0
to 3). Since InEvents of Slot 0−2 happen before InEvent
of Slot3, this worker only monitors the occurrence of
InEvent of Slot3 to check whether all the four input data
are ready. It is noted that all InDevPtrs in adjacent slots
belong to a contiguous global memory space, which enables

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 6

Transfer Computation

Timeline TimelinetT tC tC

Fig. 6: Improvement of GPU resident memory pool.

the input data can be organized into batches of different
sizes. When the worker finishes the computation task, re-
sults are output to the corresponding OutCpuPtr, and
OutEvent is recorded into OutStream. As OutEvent
occurs, the memory pool responds to the user. For efficient
batching, the number of slots in the memory pool is rec-
ommended to be several times of MaxInf , which is the
maximum number of alive inference requests as described
in Table 3.

5.2 Benefits of GPU Resident Memory Pool
Thanks to the GPU resident memory pool, the waiting time
is excluded on the host, as the input data is transferred as
soon as the request arrives. Requests get concatenated one
by one automatically when entering the memory pool. No
extra CPU resources are needed to keep the batch queue.
The batch size is later determined by the elastic batch
scheduler.

The memory pool also brings benefits in terms of data
transfer-computation overlap. As aforementioned, we get a
new execution timeline of the batched requests. The left side
of Figure 6 shows the origin round-robin way of execution.
The right side of Figure 6 shows how the batched requests
are executed theoretically after introducing the memory
pool. The GPU resident memory pool acts as a buffer
zone between the incoming requests and the scheduler. The
received request waits for its turn to get processed on GPU
instead of queuing on the CPU. The worker in the inference
engine directly fetches the ready input stored in the memory
pool instead of waiting for data transfer.

λ =
tT

tT + tc
=

1

1 + tc
tT

(1)

Comparing the two execution timelines, Equation 1 ex-
presses the upper limit of the theoretical throughput im-
provement. Let λ, tT , and tC represent the ratio of the
throughput increase, data transfer time, and computation
time. Analyzing this equation gives us some hints: 1
The efficiency of the memory pool dominates the defacto
throughput improvement. With a lower overhead of mem-
ory pool, E2bird can get closer to the upper limit; 2 The
ratio of computation time to data transfer time(tc

tT
) deter-

mines the upper limit. Thus the throughput improvement
varies with the tc

tT
of different deep learning services. The

deep learning services with low tc
tT

get greater improvement
than those with high tc

tT
.

5.3 Validating Reasonability
Despite theoretical benefits, there may be a doubt in the
effectiveness of the GPU resident memory pool. Typically,
transferring a single large file between disk and memory is

Fig. 7: Latency of split Memcpy and computation.

faster than transferring multiple small files with the same
total volume. Similarly, it is also possible that individual
input data transfer through PCI-e declines performance.

To validate the reasonability of the memory pool, we
conduct a simple experiment in which 256 pictures are
copied from CPU to GPU through PCI-e to simulate data
transferring. A total of 256 pictures are divided into N
fragments, where N may equal to 1, 2, 4, 8, 16,256. The
recorded elapsed time of transferring 256 pictures with
different N is shown in Figure 7. The x-axis represents
the binary logarithm of the number N . The right y-axis
represents the latency of memory operations for transferring
256 pictures. As we can see, splitting data movement into
small batches has similar performance to data movement in
a large batch. The latency of transferring a large piece of data
and multiple pieces of data with the same total size through
PCI-e are almost equivalent. The maximum difference of
latency between with and without data splitting is lower
than one millisecond (3.9 microseconds for each request),
which is negligible.

Overall, our design philosophy of the memory pool is
supported by this experiment. The performance stability of
the memory pool is guaranteed in spite of the brought-in
overhead.

6 MULTI-GRANULARITY INFERENCE ENGINE

In this section, we exploit the multi-granularity inference
engine to enable multiple inference workers to run con-
currently. We also adopt techniques to reduce the global
memory overhead caused by multiple workers, validate
the performance of the inference engine, and discuss the
configuration of multiple workers.

6.1 Enabling Concurrent Multiple Batches
The multi-granularity inference engine is aimed at adapting
to bursty load. Multiple workers are kept alive simultane-
ously in the inference engine. Each worker can be config-
ured with different batch sizes and run independently since
they are bound to different CUDA streams. Therefore, the
inference engine is capable of launching multiple workers
to process the inferences according to the load. The batch
size summation of all the busy workers increases in real-
time when the load rises.

The idle workers reside in a priority queue called idle
queue, regularly updated by the scheduler introduced in
Section 7. To cooperate with the scheduling policy, the
workers in the idle queue are sorted in descending order

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 7

according to its batch size by using a red-black tree. Each
worker is responsible for processing the batched requests
and returning the result of the inference to the host side.
After finishing processing, the worker enters the idle queue,
which will be re-sorted automatically.

6.2 Reducing Global Memory Overhead

Without careful global memory management, keeping mul-
tiple workers alive in the inference engine consumes much
global memory space of GPUs. In those deep learning
training systems, several techniques have been developed
to relieve global memory consumption, including dynamic
memory allocation, re-computation, and memory swap-
ping [39], which have negative impacts on performance.
These techniques are all kinds of a trade-off between mem-
ory and performance, which is not applicable to deep learn-
ing serving. The passion for high performance is the first
rule when it comes to online service. We mainly make good
use of two static memory optimizations to reduce global
memory consumption while guaranteeing the high perfor-
mance of inference workers [40] . Afterward, the inference
engine avoids the trade-off.

6.2.1 Reuse memory for intermediate results

Commonly, the deep learning model holds a large number
of hidden layers in it. However, only a single layer is active
for computation on GPUs at the same time. In deep learning
serving, intermediate results of hidden layers do not get
involved in any back-propagation in compared to training.
There is no need to store the intermediate results that no
succeeding layers depend on. These properties allow us to
reuse the global memory for computation of the currently
active layer, allocated for preceding or succeeding layers.
When referring to reusing the global memory, we stati-
cally reuse the allocated global memory in multiple tensors
instead of using a unified memory pool. Consequently,
reusing the global memory in the workers relieves the
overuse of global memory brought in by multiple workers
without a negative impact on the performance of inference.

6.2.2 Weight sharing among workers

All the workers in the multi-granularity inference engine
provide the same deep learning service based on the same
model. The weight parameters of the deep learning model
can be shared among all the workers. Owing to the read-
only property, only a copy of weight parameters is enough
for all workers, which further alleviates the global memory
overuse.

The static memory allocation runs in the following
steps. The multi-granularity inference engine holds all the
weight parameters of the deep learning model, which can
be accessed by all the workers in the engine. Each infer-
ence worker uses two APIs(ScanNetwork(), AllocateGpu())
to conduct the static memory allocating for intermediate
results. ScanNetwork() scans the model architecture to get the
computation topology, on which the worker can construct
the computation dependencies based. Finally, AllocateGpu()
allocates the global memory for each tensor in the worker
before serving deep learning inference request.

6.3 Performance Validation

There is also a doubt in the performance of the multi-
granularity inference engine. For instance, provided that the
latency of running two workers of batch size 4 concurrently
is much longer than one worker of batch size 8, there is
a great possibility that the inference engine leads to QoS
violation when running multiple workers to support a high
load.

We conduct another simple experiment to validate
the inference engine performance. In the experiment, the
CUDNN convolution function, which is the most compute-
intensive function in deep learning networks, is called
repeatedly for 50 times to simulate inference of a deep
learning network, what we call FakeNet. Assuming that 256
inferences of FakeNet are remaining to be processed, we
complete all the inferences with N workers of batch size
M , where N ∗ M = 256 and N varies according to the
list(1, 2, 4, 8,256). The elapsed time of each possibility
is shown in Figure 7. The x-axis represents the binary
logarithm of the number N , while the left y-axis represents
the latency of the inferences of FakeNet.

As shown in Figure 7, with the same amount of infer-
ences, the computation latency of using one worker with
a single large batch size and using multiple workers with
multiple small batch sizes are almost the same as long as
we manage the workers carefully. The computation latency
maintains stable between 1 and 26 = 64, while increases
when the computation is divided into 27 = 128 and 28 =
256. This is mainly because that too many CUDA streams
running together cause too much context switch overhead
of SMs, which results in severe performance degradation.

The above experiment results show that the performance
of the inference engine can get guaranteed as long as its
configuration is carefully managed. Considering the exper-
iment results above and the demand of the elastic batch
scheduling policy in Section 7, the batch size of all workers
in the inference engine all coincide to 2n for better utilization
of hardware, where n is a non-negative integer. Note that
the configuration details of the multi-granularity inference
engine will be discussed in Section 7, which varies according
to the requirements of the elastic batch scheduler.

7 ELASTIC BATCH SCHEDULER

In this section, we first use a scheduling model to quali-
tatively derive the rules that the elastic scheduling policy
should obey to guarantee the QoS. Then we introduce the
elastic batch scheduler, which improves responsiveness and
throughput by coordinating the memory pool and inference
engine. The elastic batch scheduler consists of two elastic
scheduling policies.

7.1 Rules for Guaranteeing the QoS

The multi-granularity inference engine enables E2bird to
launch a new inference worker whenever there are suffi-
cient inference requests and hardware resources. Certainly,
the latency time of inference requests changes due to co-
running of former and new inference workers. So the elastic
scheduling policy must guarantee that all the busy inference
workers meet the requirement of the QoS.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 8

W1

Alone

Co-run

Worker_1
Worker_2

Timeline
t0 t1 t2 t3 t4 t0+t30

W1’ W2’W2

W0

Fig. 8: Interaction of co-running batches.

For the above reason, the QoS guaranteeing of the E2bird
turns into a more complex problem of multi-QoS. For the
qualitative analysis, we abstract a simplified scheduling
model from the co-running of multiple workers in the multi-
granularity inference engine. This simplified scheduling
model only consists of two inference workers: the already-
launched one and the new-launched one. The reason for that
is, all the already-launched workers can be considered as a
big worker who meets the requirement of the QoS without
the interference of the new-launched worker.

Figure 8 shows the execution timeline for the simplified
scheduling model. Here, the represents worker 1 which
consists of all the already-launched workers and the
represents the new-launched worker 2. We set the QoS target
to the time interval t3. As shown in Figure 8, the Alone time-
line means that without the interference of new-launched
worker, worker 1 completes the computation at t0, which
is definitely shorter than t3. Within the Co-run timeline,
worker 1 runs independently from 0 to t0. At t0, worker 2
is launched according to the elastic scheduling policy. From
t0 to t1, worker 1 and worker 2 runs jointly on GPUs. At
t1, worker 1 completes computations, and worker 2 begins
to run independently. Finally, worker 2 completes computa-
tions at t4. To guarantee the QoS, both the elapsed time of
worker 1 and worker 2 should be shorter than the QoS target
t3, which is equivalent to Equation 2.

!
t2 < t3
t4 < t0 + t3

(2)

To simplify the resource sharing mechanism on GPUs,
we firstly conduct an experiment to characterize the per-
formance of deep learning models on GPUs. Here, we
still use the convolution operator to simulate the deep
learning models, which occupies the most of computation
time. A convolution operator with batch size ranging from
1 to 64 is executed for 152 times in the experiment. The
increase of batch size indicates the increase in serving work-
load. And two kinds of convolution algorithms are used
-winograd [41] and im2col [42]- which are mostly used in
the SOTA deep learning models. The latencies of the 64
cases are recorded in Figure 9. The x-axis represents the
batch size used for executing, and the y-axis represents the
corresponding latencies. As we can see, the latency of im2col
grows linearly as the batch size increases. While the latency
of winograd grows as a ”ladder”, the general growing
trend is still linear. Hence, for the qualitative analysis, we
can assume that the execution time of the worker can be
obtained by W

u , where W means the workload and u means
the compute capacity provided by GPUs.

During the execution, we divide the workload W of a
worker into multiple fractions according to the change of
compute capacity u. When multiple workers run jointly, the

Fig. 9: Performance Scalability of Deep Learning Operators

workers share the total compute capacity u of the GPU.
Then we can get Equation 3. Here W0 and W ′

0 represent
the total workload of worker1 and worker2 . Respectively,
W1, W ′

1, W2, and W ′
2 represent the workload of the different

periods, as shown in Figure 8. u0 represents the total com-
pute capacity of the GPU. u1 and u2 represent the compute
capacity that worker1 and worker2 get during co-running.
The summation of u1 and u2 should be smaller than u.

"
#

$

W0 = W1 +W2

W ′
0 = W ′

1 +W ′
2

u0 ! u1 + u2

(3)

"
%#

%$

u0 ! u1 + u2
W1

u0
+ W2

u1
< t3

W ′
1

u2
+

W ′
2

u0
< t3

(4)

Equation 4 can be obtained by combining Equation 2 and
Equation 3. After some transformation, we conclude as
Equation 5. Only if Equation 5 is satisfied, the QoS can be
guaranteed. As we can see, u2 is restricted by the upper
limit and the lower limit to meet the QoS target of both
workers. Or said differently, elastic scheduling policy aims
to control the compute capacity of the new-launched worker
to guarantee the QoS.

&
u2 < u0 +

W2u0

W1−t3u0

u2 >
W ′

1u0

t3u0−W ′
2

(5)

7.2 Naive Elastic Scheduling: N-Ebird

On instinct, the batch size is the main factor that influences
the compute capacity of an inference worker. A worker
with a larger batch size tends to have higher parallelism,
which means occupying more SMs when running jointly
with other workers. Therefore, in the naive elastic schedul-
ing policy, we control the total amount of current active
inference requests to improve the responsiveness and get
a higher throughput while guaranteeing the QoS, which is
the original design of Ebird.

N-Ebird ensures that the total amount of active requests
are smaller than a specific value at a coarse-grained level re-
gardless of controlling the amount of the inference workers.
This specific value is considered to be the max batch size
(MaxBS) that can be used by an inference worker while not
violating the QoS, which is profiled offline. We launch the
new inference worker as long as the bath size summation of
older workers and the new-launched worker is smaller than
MaxBS. This simple thought is based on the performance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 9

TABLE 3: Parameters of elastic batch scheduling algorithm.

Parameters Explanation

DevPtr Device address where input data begins
N Number of ready input in memory pool
Q Queue of idle workers

MaxInf Maximum inferences allowed alive
CurInf Number of alive inferences

MemState
State of GPU resident memory pool

(only used in E-Ebird)

EngineConfs
Different engine configurations for
various load (only used in E-Ebird)

CurConf
Current configuration of multi-granularity

inference engine (only used in E-Ebird)

validation of the multi-granularity inference engine in Sec-
tion 6.3 and Equation 5. Firstly N-Ebird avoids an excessive
total number of allowed workers in the inference engine in
order not to degrade the performance when compared with
using a single inference worker of large batch size. Also,
the restriction on the number of active requests prevents
the system from violating the QoS caused by GPU resource
contention.

We discuss the detailed mechanism about N-Ebird in
combination with the scheduling model in Section 7.1. In
N-Ebird, we assume that each inference request shares the
GPU resource equally. Meanwhile, if the QoS target is set at
the latency when requests are processed in a batch of size
MaxBS, the batch size summation of worker 1 and worker 2
in Figure 8 can not surpass MaxBS under the scheduling of
N-Ebird. Basing on the hypothesis of equal resource sharing,
worker 1 and worker 2 can get the compute capacity, which
depends on batch size. So the performance of the concurrent
worker 1 and worker 2 can be retained as that of a single
worker whose batch size equals to MaxBS, which means
Equation 5 is satisfied . Now that worker 1 is launched ahead
of worker 2 in fact, the QoS can be guaranteed.

7.2.1 Configuring inference engine

The configuration of the multi-granularity inference engine
under the scheduling of N-Ebird is as follows. Given the
maximum allowed batch size s = 32, we keep six mod-
els alive in the inference engine, whose batch sizes are
configured as the list [1, 1, 2, 4, 8, 16]. This is based on the
overall consideration of three factors. First, each integer can
be produced by the list [1, 1, 2, 4, 8......]. Thus the inference
engine is capable of accommodating the different loads.
Second, with this configuration, a worker of large batch size
can be scheduled to better utilize the parallelism of GPU
under high load instead of using too many workers with
small batch size. Third, If the batch sizes of all workers s are
set to 1 to accommodate the different load, the GPU global
memory is overused, let alone the poor performance of the
inference engine.

7.2.2 Scheduling Algorithm

Algorithm 1 lists how the scheduler schedules the inference
requests in the memory pool to be processed by the workers
in the inference engine. The parameters used in the algo-

8 4
Input

Pop out

2 1 1
Idle Queue

8

4

Input

2 1 1
Idle Queue

8 4
Enter

2 1 1

Output

Idle Queue

Input
Idle Worker
Busy Worker

Fig. 10: Example of elastic batch scheduling.

rithm are listed in Table 3. More specifically, alive in the table
means that the inferences are in the process of computation.

The scheduler runs as follows. Firstly, when monitoring
the memory pool and inference engine, the scheduler ac-
cesses the information about load (N), the beginning device
address (DevPtr) of input remaining to be scheduled,
and the number of alive inferences (CurInf). Secondly, the
scheduler works out that if there are idle workers and the
maximum number of inferences that can be dispatched to
the inference engine by choosing the smaller one (R) of N
and (MaxInf − CurInf). Then the scheduler repeatedly
picks the first worker in the idle queue Q whose batch size
is not greater than R until R is less than 0 or no workers can
be picked. The scheduler switches the input address of the
chosen worker to DevPtr and wakes up the worker from
the idle queue Q. The scheduler also updates the idle queue
Q when workers finish processing inferences dispatched to
them.

Algorithm 1 Naive Elastic batch scheduling algorithm.

Require: N, DevPtr, Q, MaxInf , CurInf
1: while True do
2: if !Q.empty() then
3: R ← min(N,MaxInf −CurInf)
4: Woker ← Q.front()
5: while R > 0 and Worker do
6: if R ≥ Worker.batchsize then
7: Schedule DevPtr → Worker.input
8: Worker.run()
9: R ← R−Worker.batchszie

10: DevPtr ← DevPtr +Worker.batchsize
11: Q.remove(Worker)
12: else
13: Worker ← Worker.next()

Figure 10 shows an example of how the elastic batch
scheduler coordinates the memory pool and the inference
engine work. represents the concatenated input data in
the memory pool. represents the busy worker which are
performing inference, while represents the idle worker.
Assume that at a certain time, input data of 12 inferences
are ready in the memory pool. A worker with batch size 8
has been scheduled to process the first 8 inferences, while 4
requests remain in the memory pool. The batch size of the
first worker in the idle queue is 4. At the next scheduling, the
scheduler pops the first worker out from the idle queue and
schedules this worker to process the remaining 4 requests.
Later, when the worker of batch size 8 completes the infer-
ence, the scheduler puts the worker back into the idle queue.
Through such work style, the scheduler operates with the
information from memory pool and the inference engine.
The batch size configuration varies in real-time according

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 10

(a) Incv4-BS-4 (b) Res50-BS-4 (c) Res151-BS-4 (d) Res152-BS-4 (e) Vgg16-BS-4 (f) Vgg19-BS-4

(g) Incv4-BS-8 (h) Res50-BS-8 (i) Res151-BS-8 (j) Res152-BS-8 (k) Vgg16-BS-8 (l) Vgg19-BS-8

(m) Incv4-BS-16 (n) Res50-BS-16 (o) Res151-BS-16 (p) Res152-BS-16 (q) Vgg16-BS-16 (r) Vgg19-BS-16

(s) Incv4-BS-32 (t) Res50-BS-32 (u) Res151-BS-32 (v) Res152-BS-32 (w) Vgg16-BS-32 (x) Vgg19-BS-32

Fig. 11: Profiling results of all mdoels under various loads.

to the load and GPUs operation status. There is a balance
between the memory pool and the inference engine.

In summary, at the time of scheduling, we have to
request a new idle worker of the multi-granularity inference
engine to process the new batched requests. Because of the
red-black tree used to sort the idle workers in the inference
engine, the time complexity of requesting a new idle worker
from the idle queue is O(logM), where M is the number of
the alive workers in the multi-granularity inference engine.
And the time complexity of the rest steps is O(1). Hence, the
time complexity of the scheduling algorithm is O(logM).

7.3 Enhanced Elastic Scheduling: E-Ebird

N-Ebird works under the guideline of the hypothesis, equal
resource sharing. But resource contention of multiple work-
ers on GPUs is difficult to figure out only with a hypothesis.
Also, the configuration of the multi-granularity inference
engine is fixed due to the limitation of global memory in
the origin design of Ebird. After exploiting reusing memory
techniques, E2bird is able to hold more workers in the
multi-granularity inference engine. The configuration of the
inference engine is flexible and able to adjust to load. A new
question emerged: what is the best combination of workers in
the inference engine for a specific model under a specific load? The
deep learning models may require a specific batch size to be
executed more efficiently due to the architecture of models
and GPUs, which is neglected by N-Ebird.

Inspired by analysis of the elastic scheduling model in
Section 7.1, we investigate the factual interaction of co-
running inference workers by experiments to gain the more
appropriate scheduling policy, E-Ebird. The work style of E-
Ebird includes two phases: the offline phase and the online
phase. In the offline phase, we profile all combinations of
worker configurations under different load (TotaolBS) and
those configurations with the best performance are recorded
for guiding the online scheduling. Then in the online phase,
the elastic batch scheduler will always use the best combi-
nation of workers for serving under different load, which
has been profiled in the offline phase.

7.3.1 Interaction of Co-running Inference Workers
For a better understanding of the interaction among co-
running inference workers, we profile the execution time
performance of the multi-granularity inference engine. The
configuration of each profiled inference engine is obtained
by Equation 6. In Equation 6, i represents the num of work-
ers with batch size = 20, j represents the num of workers
with batch size = 21,...n represents the num of workers
with batch size = 25. Given TotalBS, the summation of
all the workers’ batch size, we profile the inference engines
which are configured with all the cases of [i, j, k, l,m, n].
Incidentally, we use the average latency of all workers in
each case to denote the execution time performance instead
of tail latency, which indicates better responsiveness.

TotalBS = 20×i+21×j+22×k+23×l+24∗×m+25×n (6)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 11

Fig. 12: Perfomance of multi-granularity inference engine
for Resnet 50 with TotalBS = 32.

Figure 12 depicts the results of profiling inference engine
with Res152 when setting TotalBS at 32. Here, we only
select the 6 cases with the shortest latency and 2 cases with
the longest latency to make the results clear. In Figure 12,
each line represents a case of the inference engine, the x-
axis represents the binary logarithm of the worker batch
size N , and the y-axis represents the num of each kind of
worker. The legends in Figure 12 represent the correspond-
ing latencies. As we can see, the execution time (85.3ms) of
the inference engine with the configuration ([0, 0, 0, 2, 1, 0])
is the shortest. Meanwhile, the latencies in many cases are
shorter than that (93.7ms) of the inference engine with a
single worker whose batch size equals TotalBS. On the
contrary, in the two cases, which consist of many workers
whose batch size equals 1, the average latency can be 4 × of
the shortest one.

Two key points can be concluded from the above ob-
servations: 1 To a certain extent, multiple workers can
achieve better responsiveness and higher throughput than
a single worker; 2 Too many workers with small batch
sizes cause severe performance degradation, and the QoS
target is be violated. Thus, under a specific load, there exists
a specific configuration of the inference engine, which is
neither a single worker with a large batch size nor too many
workers with small batch sizes. An offline profiling helps
the scheduler to seek it.

7.3.2 Offline Phase
Because the scheduler works under various loads, in the of-
fline phase, E-Ebird profiles the performance of the inference
engine under different loads. As illustrated in Table 1, work-
ers with smaller batch sizes achieve better responsiveness
but support lower throughput. Therefore, we set TotalBS
at (4, 8, 16, 32), to simulate the various loads. We profiled
all the models used in Section 8 for evaluation. The results
are shown in Figure 11. In these sub-figures contained in
Figure 11, the x-axis represents latency, the y-axis represents
the binary logarithm of worker batch size, and the z-axis
represents the num of each kind of worker.

After finishing profiling all the cases, E-Ebird selects the
best inference engine configuration for each load according
to the profiling results. All these configurations are saved
as the scheduling guidelines. Then E-Ebird initiates the
inference engine with a configuration that can satisfy all
selected configurations. We still give an example of Res152,
as shown in Table 4. The inference engine with the config-
uration ([1, 1, 1, 2, 1, 0]) can satisfy all selected scheduling

TABLE 4: Configuration of inference engine for Res152.

TotalBS Configuration

4 [0,0,1,0,0,0]
8 [0,0,0,1,0,0]

16 [0,0,2,1,0,0]
32 [0,0,0,2,1,0]

Inference Engine [1,1,1,2,1,0]

guidelines. It is worth noting that two workers of size 1 and
size 2 are kept by default to support the extremely low load.
There is no need for profiling the cases of (TotalBS = 1, 2).

7.3.3 Online Phase

Algorithm 2 Enhanced Elastic batch scheduling algorithm.

Require: N, DevPtr, Q, MaxInf , CurInf , MemState,
EngineConfs, CurConf

1: while True do
2: if MemState changed then
3: Update CurConf from EngineConfs
4: Update Q according CurConf

5: if !Q.empty() then
6: R ← min(N,MaxInf −CurInf)
7: Woker ← Q.front()
8: while R > 0 and Worker do
9: if R ≥ Worker.batchsize then

10: Schedule DevPtr → Worker.input
11: Worker.run()
12: R ← R−Worker.batchszie
13: DevPtr ← DevPtr +Worker.batchsize
14: Q.remove(Worker)
15: else
16: Worker ← Worker.next()

In the online phase, E-Ebird works under the guidelines
got in the offline phase. Algorithm 2 lists how E-Ebird
schedules the inference requests.

The most parameters used in Algorithm 2 are the same as
that of N-Ebird, displayed in Table 3. Three new parameters
are introduced, including MemState, EngineConfs, and
CurConf . MemState represents the state of the memory
pool, EngineConfs represents the configurations saved
in the offline phase, and CurConf represents the current
configuration of the inference engine. E-Ebird checks the
MemState firstly before starting a new round of schedul-
ing. The MemState denotes the load by the total number
of pending requests in the GPU resident memory pool. If the
load changes, the scheduler updates the CurConf guided
by the EngineConfs. And then the scheduler updates the
queue of idle workers accordingly. The remaining steps run
as the same as the N-Ebird.

The extra steps for updating the configurations of the
multi-granularity inference engine augment the complexity
of scheduling policy. Upon changing the combination of
alive workers, the queue of idle workers has to be recon-
structed according to the batch size of workers, which is a
process of building a red-black tree. Thus, under the worst
case, the time complexity of the scheduling policy equals

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 12

Fig. 13: The end-to-end latencies of the inferences in different benchmarks with TF-Serving, N-Ebird, and E-Ebird.

to O(MlogM) + O(logM) = O(MlogM), where M is
the number of the alive workers in the multi-granularity
inference engine.

8 EVALUATION

In this section, we first evaluate the effectiveness of E2bird
in improving the responsiveness and the throughput while
satisfying the QoS requirement of deep learning-based ser-
vices. We also dive into E2bird for inspecting the hardware
operating status and figure out the overhead of E2bird. The
two scheduling algorithms in E2bird are both evaluated.

8.1 Experiment Setup

TABLE 5: Evaluation specifications.

CPU Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

GPU NVIDIA TITAN RTX (72 SMs, 576 Tensor Cores)

OS Ubuntu 16.04.5 LTS with kernel 4.15.0-51-generic

Software
GPU Driver Version: 418.39

CUDA Version: 10.1; CUDNN Version: 7.5

Benchmarks
Inceptionv4 (Incv4); Resnet 50 (Res50); Resnet 101 (Res101)
Resnet 152 (Res152); VGG 16 (VGG16); VGG 19 (VGG19)

We perform all the experiments on a machine equipped with
the latest Nvidia Titan RTX GPU. The GPU has 72 SMs plus
576 Tensor cores and is able to deliver outstanding perfor-
mance for deep learning inferences [43]. Table 5 lists the
detailed experimental setup. As shown in Table 5, we use
six widely-used deep neural networks as the online services
to evaluate E2bird. We compare E2bird with SOTA deep
learning serving system, TF-Serving, in the following of this
section. TF-Serving uses the OPT Wait policy described in
Section 3 for all the benchmarks because it has been shown
to be able to provide better performance than NO Wait
policy and the static policy. That is, the maximum batch size
is set to 32, and the maximum waiting time is set to be an
optimized value for each benchmark.

8.2 Improving Responsiveness
In this experiment, we evaluate the effectiveness of E2bird
in improving the responsiveness of deep learning-based ser-
vices with the diurnal load pattern. To emulate the diurnal
load pattern, we launch 400 inference requests for every
benchmark, in which the first 150 inferences are launched
at a low rate, and the later 250 inferences are launched at a

high rate. The load is high if the latencies of the inferences
are close to the QoS target (200ms is used in this experiment)
with TF-serving.

Figure 13 shows the end-to-end latencies of the in-
ferences in different benchmarks when the inferences are
served with TF-Serving, N-Ebird, and E-Ebird, respectively.
As observed from this figure, both N-Ebird, and E-Ebird can
significantly reduce the end-to-end latency of the inferences
at both low load and high load for all the benchmarks
compared with TF-Serving. When the load is low, N-Ebird
reduces the latency of the inferences ranging from 44.6%
to 70.9% for the benchmarks. When the load is high, N-
Ebird reduces the latency of the inferences ranging from
7.4% to 53.1% for the benchmarks. Under low load, E-
Ebird maintains a similar latency performance with N-
Ebird, which indicates they are all using workers with small
batch sizes for serving. Under high load, E-Ebird achieves
better performance ranging from 5% to 30% compared with
N-Ebird.

The reason why the two algorithms can reduce the
latency of the inferences at low load is that they reduce
the unnecessary waiting time by the same strategy. Besides,
they can improve the responsiveness at high load because
they process inferences using multiple independent work-
ers in the multi-granularity inference engine. An inference
can be processed once there are free workers, and once a
worker completes its inferences, the inference results are
immediately returned to the users. On the contrary, even
though the waiting time of inferences is short at high load
with TF-Serving, the inference inputs and results are all
transferred together, which all result in latency increase. Due
to the delay of input transferring, the latencies of all infer-
ences increase by the input transferring time. Meanwhile,
all inference results are returned after all the inferences in
the current batch complete. Because the processing time
of a large batch of inferences is long, early inferences in a
batch suffer from longer response latency with TF-Serving
compared with N-Ebird and E-Ebird. In addition, because
of the offline phase, E-Ebird adopts a better configuration
of the inference engine than N-Ebird. Under high load,
multiple workers of biggish batch sizes are activated in E-
Ebird instead of these workers whose batch size equal 1 or
2 in N-Ebird, which avoids too many context switch and
enables E-Ebird to work better.

Moreover, TF-Serving results in QoS violation of the
inferences in Res101, when the load increases, which is
mainly because TF-Serving processes batches of inferences

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 13

Fig. 14: The inference processing throughput of the bench-
marks with TF-Serving, N-Ebird, and E-Ebird while guaran-
teeing the QoS.

sequentially. When the current load is low, the inferences are
organized into small batches. If the load increases dramati-
cally, the inferences queue up even if the currently running
batch is not able to fully utilize the GPU. The queuing
results in the long end-to-end latency of the inferences when
the load bursts. On the contrary, N-Ebird and E-Ebird can
process the bursty inferences if the current inferences are
not able to utilize the GPU fully. They can always guarantee
the QoS of deep learning-based services no matter the load
is bursty or not.

8.3 Increasing Throughput while Guaranteeing the
QoS
In this subsection, we evaluate E2bird in increasing the
throughput of inference processing while guaranteeing the
QoS. We use stable load in this experiment to eliminate the
impact of load bursty on the latencies of the inferences.

Figure 14 presents the achieved inference processing
throughput with TF-Serving, N-Ebird, and E-Ebird, while
the latencies of the inferences are shorter than the QoS
target. As we can see from this figure, N-Ebird and E-Ebird
improve the inference throughput of all the benchmarks
compared with TF-Serving. On average, N-Ebird improves
the throughput by 34.4% compared with TF-Serving and E-
Ebird additionally improves the throughput by 9.9% com-
pared with N-Ebird. In this way, given the same peak load
of a deep learning-based service, fewer GPUs are needed to
host the service with N-Ebird and E-Ebird.

The two algorithms in E2bird are able to improve the
throughput while guaranteeing the QoS because they over-
lap data transfer and computation. N-Ebird, and E-Ebird
eliminate the long GPU idle time due to data transfer.
On the contrary, the SMs of the GPU in TF-Serving are
idle when the input data/the inference result is transferred
to/from the GPU. E-Ebird achieves a higher utilization of
GPU resources than N-Ebird, which mainly benefits from
offline profiling.

As shown in Figure 14, the throughput improvements
are big for some benchmarks (e.g., Res101) but are rel-
atively low for other benchmarks (e.g., Res152). This is
mainly because the benchmarks have different data transfer-
computation ratios. The data transfer-computation ratio of
Res101 is higher than the corresponding ratio of Res152.
The benefit of overlapping data transfer and computation
declines if the data transfer takes a large percentage of an
inference’s end-to-end latency.

Fig. 15: Snapshot of inference processing with N-Ebird.

Fig. 16: Snapshot of inference processing with E-Ebird.

8.4 Diving into E2bird

To better understand why E2bird performs better than TF-
Serving, Figure 15 shows the execution trace of executing
inferences of Res152 with N-Ebird, and Figure 16 shows
that with E-Ebird (Figure 3 shows a similar trace with
TF-Serving). In these two Figures, “Worker-n” shows the
worker’s kernel execution for inference batches of size n,
“Whole GPU” shows all the kernel execution in all the
workers on the whole GPU.

Comparing Figure 15 and Figure 3, the inputs of infer-
ences are transferred to GPU separately in N-Ebird, while
TF-Serving transfers the input data of all the inferences in
a batch together. The separate data transfer is enabled by
the GPU resident memory pool that stores inputs of all the
inferences. In this way, the data transfers are distributed on
the execution timeline and do not interrupt the computation
of GPU. Because data transfer and computation overlap
with each other, the GPU is always processing kernels at
high load, as shown in Figure 15 (Row “Whole GPU”).

As observed from Figure 15, we can also find that the six
workers run in parallel, while the kernel execution timeline
of each worker is relatively sparser than that in Figure 3.
If the kernel from one worker can occupy all SMs of the
GPU, the kernels from other workers are not executed until
there are idle SMs on the GPU. The kernel execution timeline
of the worker with the smaller batch size is also sparser
than that of the worker with a larger batch size, indicating
that N-Ebird intends to schedule a worker with the larger
batch size within the idle worker queue under high load.
The data transfers from the GPU to the main memory are
also scattered on the timeline, which are executed by each
worker. It explains why N-Ebird is able to reduce the end-to-
end latency of inferences at high load, as shown in Figure 13.

Comparing Figure 15 and Figure 16, the workers that
E-Ebird uses are less than N-Ebird. Though E-Ebird owns
many workers of different batch sizes in it, E-Ebird always
chooses the best inferences engine configuration according
to profiling results under a specific load. As shown in
Figure 12, E-Ebird only uses 3 workers whose batch sizes are
(8, 8, 16) under the high load. Under the same conditions
of the time interval, “Row Whole GPU” of E-Ebird is also
denser than that of N-Ebird, which indicates a higher utiliza-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 14

Fig. 17: Global memory usage of TF-Serving, NM-Ebird, and
E2bird.

tion of E-Ebird. This phenomenon also explains why E-Ebird
achieves lower latency under high load and supports a
higher throughput. The fixed inference engine configuration
of N-Ebird causes the performance decline.

8.5 Overhead of E2bird
The performance overhead of the memory pool and infer-
ence engine has been analyzed when validating their design
philosophy in Section 5.3 and Section 6.3. The rest overhead
of E2bird comes from the multi-granularity inference engine
owing to maintaining multiple inference workers.

Figure 17 shows the global memory usage of TF-serving,
NM-Ebird, and E2bird. Here NM-Ebird represents the
E2bird without the static memory optimizations. As we
can see, NM-Ebird uses 15.2% more global memory space
compared with TF-Serving. NM-Ebird uses more global
memory space because workers duplicate the global mem-
ory used for storing the weight and intermediate results of
the deep learning network . Moreover, the extra global mem-
ory [44] needed by convolution is also duplicated. After
adopting optimizations, E2bird reduce the global memory
consumption dramatically. On average, E2bird now reduce
the global memory usage by 64.8% compared with NM-
Ebird and 59.4% compared with TF-Serving.

9 CONCLUSION

E2bird improves responsiveness and throughput for de-
ploying deep learning services in datacenters outfitted with
GPUs. For these purposes, E2bird enables the GPU-side
prefetch mechanism and the elastic batch scheduling pol-
icy for the deep learning serving system. As far as we
know, E2bird is the first GPU-side batching system for
deep learning serving system on GPUs. Through comparing
the performance of E2bird and TF-Serving (State-of-the-art
deep learning serving system), we verify the effectiveness
of E2bird in eliminating the waiting time for responsiveness
and overlapping data transfer and computation for GPUs
when providing deep learning services. Generally, E2bird
enhances responsiveness. Moreover, E2bird improves the
throughput by 47.4% on average compared with state-of-
the-art solutions, TF-Serving.

ACKNOWLEDGMENT

This work is partially sponsored by the National R&D Pro-
gram of China (No. 2018YFB1004800), the National Natural
Science Foundation of China (NSFC) (61602301, 61632017,
61832006, 61702328).

REFERENCES

[1] Apple siri. [Online]. Available: https://www.apple.com/siri/
[2] Google translate. [Online]. Available:

https://translate.google.com/
[3] Prisma. [Online]. Available: https://prisma-ai.com/
[4] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural networks, vol. 61, pp. 85–117, 2015.
[5] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.

Dally, “Eie: efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2016, pp. 243–254.

[6] Big basin v2. [Online]. Available: https://code.fb.com/ml-
applications/
the-next-step-in-facebook-s-ai-hardware-infrastructure/

[7] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and
F. Yang, “Multi-tenant gpu clusters for deep learning workloads:
Analysis and implications,” Technical report, Microsoft Research,
2018. https://www. microsoft. com/en , Tech. Rep., 2018.

[8] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible,
high-performance ml serving,” arXiv preprint arXiv:1712.06139,
2017.

[9] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving
system,” in 14th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 17), 2017, pp. 613–627.

[10] N. Corporation, “Cuda c/c++ streams
and concurrency.” [Online]. Available:
https://developer.download.nvidia.com/CUDA/training/Stream
sAndConcurrencyWebinar.pdf

[11] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp.
681–696, 2016.

[12] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelera-
tors to improve utilization in warehouse-scale computers,” ACM
SIGOPS Operating Systems Review, vol. 51, no. 2, pp. 17–32, 2017.

[13] B. Wu, X. Liu, X. Zhou, and C. Jiang, “Flep: Enabling flexible and
efficient preemption on gpus,” ACM SIGOPS Operating Systems
Review, vol. 51, no. 2, pp. 483–496, 2017.

[14] Multi-process service. [Online]. Available:
https://docs.nvidia.com/deploy/mps/index.html

[15] Z. Wei, C. Weihao, K. Fu, Q. Chen, M. Daniel, Edward, W. Bo,
L. Chao, and G. Minyi, “Laius: Towards latency awareness and
improved utilization ofspatial multitasking accelerators in data-
centers,” in Proceedings of the 33rd ACM international conference on
Supercomputing. ACM, 2019, pp. 58–68.

[16] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on gpus,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017, pp. 269–281.

[17] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,”
in 2009 IEEE International Symposium on Performance Analysis of
Systems and Software. IEEE, 2009, pp. 163–174.

[18] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[19] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda,
“S-caffe: Co-designing mpi runtimes and caffe for scalable deep
learning on modern gpu clusters,” in Acm Sigplan Notices, vol. 52,
no. 8. ACM, 2017, pp. 193–205.

[20] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. Xing,
“Poseidon: A system architecture for efficient gpu-based deep
learning on multiple machines,” arXiv preprint arXiv:1512.06216,
2015.

[21] Z. Fang, T. Yu, O. J. Mengshoel, and R. K. Gupta, “Qos-aware
scheduling of heterogeneous servers for inference in deep neural
networks,” in Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management. ACM, 2017, pp. 2067–2070.

[22] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
M. Erez, “Kelp: Qos for accelerated machine learning systems,” in
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 172–184.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, MARCH 2020 15

on Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 265–283.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22nd ACM inter-
national conference on Multimedia. ACM, 2014, pp. 675–678.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in PyTorch,” in NIPS Autodiff Workshop, 2017.

[26] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Kr-
ishnamurthy, and R. Sundaram, “Nexus: a gpu cluster engine for
accelerating dnn-based video analysis,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019, pp. 322–337.

[27] D. Crankshaw, G.-E. Sela, C. Zumar, X. Mo, J. E. Gonzalez, I. Stoica,
and A. Tumanov, “Inferline: Ml inference pipeline composition
framework,” arXiv preprint arXiv:1812.01776, 2018.

[28] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications
of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[29] “Tensorflow serving batching guide,” 2019. [Online]. Available:
https://github.com/tensorflow/serving/tree/master/tensorflow
serving/batching

[30] P. Gao, L. Yu, Y. Wu, and J. Li, “Low latency rnn inference
with cellular batching,” in Proceedings of the Thirteenth EuroSys
Conference. ACM, 2018, p. 31.

[31] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving
rnn-based deep learning models 10x faster,” in 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), 2018, pp. 951–
965.

[32] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, “Grnn: Low-
latency and scalable rnn inference on gpus,” in Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, 2019, p. 41.

[33] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and
huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[34] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware
parallelism,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 2, pp. 548–560, 2017.

[35] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit
quantization of neural networks for efficient inference,” arXiv
preprint arXiv:1902.06822, 2019.

[36] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in International Conference on
Machine Learning, 2016, pp. 2849–2858.

[37] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on cpus,” 2011.

[38] N. Corporation, “Profiler users guide.” [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[39] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and
T. Kraska, “Superneurons: dynamic gpu memory management
for training deep neural networks,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2018, pp. 41–53.

[40] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” arXiv preprint arXiv:1604.06174,
2016.

[41] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4013–4021.

[42] K. Chellapilla, S. Puri, and P. Simard, “High performance convo-
lutional neural networks for document processing,” 2006.

[43] “Nvidia turing architecture whitepaper,” 2019. [Online].
Available: https://www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

[44] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cudnn: Efficient primitives for deep
learning,” arXiv preprint arXiv:1410.0759, 2014.

Weihao Cui received his B.Sc. degree from
Shanghai Jiao Tong University, China. He is cur-
rently an Ph.D. student in the field of computer
science under supervision of Dr. Quan Chen in
Department of Computer Engineering Faculty of
Shanghai Jiao Tong University, China. His re-
search interests include high performance com-
puting and resource management of accelera-
tors in datacenters.

Quan Chen is a tenure-track associate pro-
fessor in the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
China. His research interests include High per-
formance computing, Task Scheduling in various
architectures, Resource management in Data-
center, Runtime System and Operating System.
He got his Ph.D. degree at June 2014 from the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China.

Han Zhao received his B.Sc. degree from
Shanghai Jiao Tong University, China. He is cur-
rently an Ph.D. student in the field of computer
science under supervision of Dr. Quan Chen in
Department of Computer Engineering Faculty of
Shanghai Jiao Tong University, China. His re-
search interests include high performance com-
puting and resource management of accelera-
tors in datacenters.

Mengze Wei received her B.Sc. degree from
Shanghai Jiao Tong University, China. She is
currently an M.Sc. student in the field of com-
puter science under supervision of Dr. Quan
Chen in Department of Computer Engineering
Faculty of Shanghai Jiao Tong University, China.
Her research interests include high performance
computing and resource management in Data-
center.

Minyi Guo Guo received the Ph.D. degree
in computer science from the University of
Tsukuba, Japan. He is currently Zhiyuan Chair
professor and head of the Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University, China. His present research
interests include parallel/distributed computing,
compiler optimizations, embedded systems, per-
vasive computing, big data and cloud computing.
He is now on the editorial board of IEEE Transac-
tions on Parallel and Distributed Systems, IEEE

Transactions on Cloud Computing and Journal of Parallel and Dis-
tributed Computing. Dr. Guo is a fellow of IEEE, and a fellow of CCF.

