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Abstract—While deep neural network (DNN) models are often
trained on GPUs, many companies and research institutes build
GPU clusters that are shared by different groups. On such
GPU cluster, DNN training jobs also require CPU cores to
run pre-processing, gradient synchronization. Our investigation
shows that the number of cores allocated to a training job
significantly impact its performance. To this end, we characterize
representative deep learning models on their requirement for
CPU cores under different GPU resource configurations, and
study the sensitivity of these models to other CPU-side shared
resources. Based on the characterization, we propose CODA,
a scheduling system that is comprised of an adaptive CPU
allocator, a real-time contention eliminator, and a multi-array job
scheduler. Experimental results show that CODA improves GPU
utilization by 20.8% on average without increasing the queuing
time of CPU jobs.

I. INTRODUCTION

The training of a deep learning (DL) model is a notori-

ously difficult and time-consuming process. To address such

a challenge, a large number of enterprises build their own

private GPU clusters and share them between different groups

to amortize the cost. This leads to the emergence of multi-

tenant GPU cluster that runs both CPU Jobs and GPU jobs.

For example, model training often requires enormous and

expensive GPU resources, companies such as Facebook choose

to run the model inference job on the CPU [1]. This multi-

tenant GPU cluster represents a new paradigm of private Cloud

and requires a dedicated study on its workload characteristics,

resource utilization efficiency and optimization.

Training a DL model is a complex process that has frequent

CPU-GPU interactions. The model training with multiple GPU

nodes can be divided into four steps. 1) The GPUs use the data

in their global memory for training, and the CPU-side worker

simultaneously prepares the next batch of data. 2) Each GPU

sends the calculated gradient to the parameter server (PS) on

CPU and waits for the synchronization. 3) The PS gathers

all the gradients, calculates the new gradients, and sends the

updated DL models to all GPUs. 4) each GPU starts the next

computation step with the new gradients. In this process, the

data prefetch and the gradient update of the PS run on CPU,

and can be affected by CPU-side jobs.

There are some prior works on characterizing or man-

aging the GPU clusters for DNN training jobs, such as

Quan Chen, Jingwen Leng, and Minyi Guo are the corresponding authors.

Microsoft’s [2] and Google’s [3]. Jeon et. al [2] pay more

attention to task locality, error, and queuing time. The work

directly splits all the CPUs and memory to all GPUs, and

lead to underutilization of CPU resources. Kelp [3] shows

that 16% of the nodes in Google’s production TPU cluster

experience peak bandwidth higher than 70% of the available

bandwidth, and proposes to optimize the allocation of memory

bandwidth. Although they consider bandwidth contention, they

ignore the DL model’s requirement on the CPU resources

that significantly impact the performance of the training. This

causes the low GPU utilization and low throughput of the

cluster. Worse, since GPU could do more data transformation

than TPU, Kelp’s performance will be further diminished.

In this work, we perform a detailed analysis of the

GPU job’s demands and contention for CPU resources on a

production-scale multi-tenant GPU cluster shared by several

artificial intelligence startup companies and research institu-

tions. The analysis reveals two key findings. As for the first

finding, For more than 10,000 GPU jobs in the cluster, a GPU

job often applies cores in a stable mode. A large number of

GPU jobs apply for one core or two cores, and a considerable

number of GPU jobs apply for over ten cores. Despite the

stable application mode, our investigation shows that GPU

jobs have different requirements for the cores to achieve the

best performance. The CPU resource assigned to a DNN

training job significantly impacts the job’s performance (to be

discussed in detail in Section IV). As for the second finding,

adopting the widely-used FIFO or DRF job scheduling, the

GPU cluster suffers from low GPU utilization, while both CPU

and GPU jobs suffer from long queuing time on the contrary.

The two findings motivate us to propose CODA, a resource

and job scheduling system that improves resource utilization

while maximizing the performance of the DNN training jobs

in multi-tenant GPU clusters. There are three challenges that

have to be resolved in CODA. 1) The optimal number of

CPU cores needed by DNN training jobs vary. CODA has to

identify the optimal one at runtime. 2) the CPU-side work of

DNN training jobs contend for the shared resources (e.g., last

level cache and memory bandwidth), and the contention may

result in severe performance degradation. CODA has to be able

to monitor the contention on shared resources and schedule

the DNN jobs accordingly to avoid serious shared resource

contention on all the nodes. 3) GPU resource fragmentation
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exists with FIFO and DRF scheduling. CODA has to be able to

minimize the GPU resource fragmentation to improve system-

wide performance.

To be more specific, CODA is comprised of an adaptive
CPU allocator, a real-time contention eliminator, and a multi-
array job scheduler. The adaptive CPU allocator finds the

optimal CPU cores for a DNN training job. Based on the

model type information, the allocator finds the optimal CPU

number in less than four attempts. The contention eliminator

monitors the memory bandwidth used by each CPU job in

real-time. When the bandwidth of one CPU job exceeds the

specified threshold, the eliminator throttles its bandwidth usage

to avoid performance impact on GPU jobs. The multi-array

scheduling module classifies CPU jobs and DNN training jobs,

and schedule them differently. In the model, each array is pre-

allocated a part of the CPU resources, jobs in different queues

can initially only use resources in this own array. When a large

number of CPU jobs are queued and the GPU task queue is

idle, the CPU job array can preempt some CPU resources from

GPU job array accordingly, and vice versa.

This paper makes the following main contributions:

• Comprehensive analysis of CPU-side resource require-
ment of DNN training jobs. The in-depth analysis

enables the design of the CODA for maximizing the

performance of DNN training jobs.

• The design of a feedback-based adaptive CPU alloca-
tion algorithm. It identifies the optimal number of CPU

cores that should be allocated to a DNN training job.

• The design of a multi-array job scheduling policy.
Based on the core requirements of DNN jobs and the

shared resource contention, multi-array scheduling re-

duces the GPU fragmentation and improves system-wide

performance.

Experimental results based on real-system job trace show

that CODA improves the GPU utilization by 20.8% without

degrading the queuing performance of low priority CPU jobs.

II. RELATED WORK

In this section, we describe previous works on resource

management in a datacenter. Previous work mainly focuses

on three aspects, which is the design of the scheduling

algorithm, the scheduling systems for specific scenarios, and

the performance analysis of the cluster and jobs.

A. Scheduling algorithm

Previous researches have proposed different scheduling al-

gorithms to solve the job scheduling problem on clusters.

DRF [4], a generalization of max-min fairness to multiple

resource types, addresses the problem of fair allocation of

multiple types of resources to users with different demands.

Mainstream job scheduling framework such as Yarn [5] and

Mesos [6] all adopt it as one option of their scheduling choice.

Choosy [7] is an extension to max-min fairness, which solves

the problem of max-min fairness in the presence of constraints.

Delay scheduling [8] is a simple strategy that when the job

that should be scheduled cannot launch a local task, it waits

for a small amount of time, letting other jobs launch tasks

instead. This strategy is also used and adapted to many job

scheduling frameworks for better throughput. These works are

orthogonal to our work, because our work is mainly for the

design of the scheduling system on the GPU cluster, rather

than the optimization of the scheduling algorithm.

B. Scheduling system

Many researches [9]–[15] aim to solve the scheduling

problem in specific scenarios. Gandiva [11] analyzes the

characteristics of the application by investigating the training

characteristics of the application and finds the best hyper-

parameter setting in the scenario of Auto-ML. And kelp [3]

attempts to control the memory bandwidth allocation on the

CPU side, thereby reducing the corresponding interference

and improving the scheduling efficiency of the TPU cluster.

Optimus [12] uses online performance models to find relative

resource configuration to reduce training time. Baymax [13]

and Prophet [14] adopt multitasking to improve the cluster

utilization for the pure GPU workloads. Slaq [15] collects the

quality improvement for resource usage and schedule concur-

rent machine learning jobs for average quality improvement.

Since they are proposed for specific application scenarios, they

do not work in the Multi-Tenant GPU cluster, which has also

prompted us to conduct new research.

C. Analysis of cloud applications

One paper of Google [16] focuses on memory access

analysis for specific applications of traditional CPU clusters

while another Google paper [17] keeps an eye on distribu-

tion characteristics of jobs and the relationship between jobs

and microstructures through more holistic cluster analysis.

Recently, there have been some papers that focus on job

analysis on GPU clusters. One research of MSRA [2] focuses

on the topology of jobs and queuing time issues, and the

reasons for the job error. Another research of Facebook [1]

analyzes the distribution and characteristics of deep learning

jobs on existing clusters and optimizes job management. These

researches are instructive for the workload analysis under the

GPU cluster. However, these papers are still complete enough,

and they do not propose a system to solve the new problems

in the GPU cluster.

III. MOTIVATION FOR CPU RESOURCE MANAGEMENT

In this section, we analyze the resource usage on a

production-scale multi-tenant GPU cluster built for training

DL models. The conventional wisdom is that GPU is the

most critical resource for DL training. However, our analysis

shows that CPU also plays a vital role in DL training.

Naively allocating too few CPUs to the training job limits the

training performance while allocating too many CPUs leads

to significant queuing delay because CPU now becomes the

scarce resource.
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Fig. 1: The CPU and GPU utilization trend of the cluster through one week.

A. Real-world GPU Cluster Investigation

We conduct our investigation on a real-world multi-tenant

GPU cluster1. The cluster comprises of about 80 PCIe-based

multi-GPU (mostly GTX 1080Ti) servers. Each server has two

sockets where the CPU is mostly Intel Xeon Gold 6132 with

14 cores. This cluster is shared by four AI startup companies

and one AI research institution. Those companies work in

the area of automatic speech recognition, natural language

processing, and computer vision. The cluster has a centralized

job management system SLURM [18] that uses FIFO to

schedule jobs from different parties. Each job can request a

certain number of CPU and GPU separately.

The cluster tenants include several artificial intelligence

startup companies and research institutions, which frequently

perform DL model training. We collect the cluster’s CPU/GPU

usage characteristics and job information through a week,

which leads to a contradictory observation. The training jobs
do not fully utilize the cluster’s GPU resources, but many
jobs take long queueing time to get submitted.

1) Resource Usage: We first analyze the resource (i.e., CPU

and GPU) usage in the cluster, which we evaluate through

the active rate and utilization rate. Equation (1) illustrates

the active CPU rate, which is the ratio between actively used

CPUs and the total number of CPUs. For an active CPU, the

utilization rate indicates its time spent in the actual work and

is collected via the operating system. We calculate the cluster’s

CPU utilization rate as the average across all active CPUs. The

GPU related metrics are calculated similarly.

Active CPU Rate = Number of Active CPUs/Total CPUs (1)

We collect the cluster’s CPU and GPU usage through a

week. As Fig. 1 shows, the GPU utilization is consistently

higher than the CPU, which can be explained by the high

computation requirement of training jobs. However, we also

observe that the GPU exhibits a relatively stable active rate

while the CPU exhibits the diurnal pattern. We dive into the

job characteristics to search for its root cause.

2) Job Characteristics: We first categorize the jobs into

GPU jobs and CPU-only jobs. Fig. 2a shows the job type

breakdown. The AI research lab contributes to the most to the

GPU jobs while the AI companies contribute most to the CPU

jobs. The difference can be explained by the different parties’

emphasis on the DL model training/inference. The research

lab emphasizes the model training which heavily relies on the

GPU while the AI companies emphasize the model inference,

1A GPU cluster from AISpeech Co., Ltd.

TABLE I: Representative DNN models.

Neural model Scenario Type Dataset

Alexnet [19] CV CNN ImageNet [20]

VGG16 [21] CV CNN ImageNet

InceptionV3 [22] CV CNN ImageNet

Resnet-50 [23] CV CNN ImageNet

Bi-att-Flow (BAT) [24] NLP RNN SQUAD [25]

Transformer [26] NLP - WMT16 [27]

Wavenet [28] Speech CNN VCTK [29]

DeepSpeech [30] Speech RNN Common Voice [31]

which typically uses the CPU [1]. Since the AI companies

are user-facing and user requests are usually bursty, it also

explains the diurnal pattern of CPU’s active rate.

3) Queueing Delay: We now analyze the job queueing

delay in Fig. 2c. We observe that the GPU jobs experience

significantly more delay than the CPU jobs. About 48.1%

GPU jobs waiting for at least 3 minutes and 41.3% GPU jobs

waiting for more than 10 minutes. However, as Fig. 1 shows,

the GPU’s active rate is rarely more than 90%. In contrast, the

CPU’s active rate can reach 100% in the peak times.

We next study the requested CPU-GPU ratio for GPUs to

understand the long queueing delay of GPU jobs. Fig. 2d

shows that 15.3% of GPU jobs request more than 10 CPU

cores. This leads to the insufficient CPU cores of these servers,

and these servers cannot accommodate the incoming GPU

jobs, which means the waste of CPU resources and GPU

resources. Besides, 76.1% of jobs are requesting 1 CPU or

2 CPUs. Theoretically, the insufficient CPU will cause the

slowdown of programs, which in turn lead to lower GPU

utilization. As such, we can conclude that the CPU is the

critical resource in the cluster as it is the root cause for the

long queueing delay of GPU jobs.

B. DNN Training CPU Usage Analysis

After recognizing the CPU as the important resource in the

cluster, we now study how the CPU core number affects the
DL model training performance. We conduct the study using

a set of representative DL models from various domains. Our

results show that the impact of CPU core number on the model

training performance is highly model- and domain-specific.

Allocating too few cores limit the single-model training per-

formance while allocating too many cores limit the other jobs’

performance. As such, in order to balance the single-model

performance and the overall cluster utilization, we need an

automatic and intelligent CPU core allocation strategy.

Tbl. I shows the set of representative DNN models. We

select state-of-the-art DL models including DeepSpeech [30],

Transformer [26], BAT [24], and Wavenet [28] that target
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Fig. 2: Information of CPU-only and GPU-based DNN training jobs.

Fig. 3: The GPU utilization when the training job uses different

numbers of CPU cores.

speech recognition, machine translation, question answering,

and speech synthesis.

Fig. 3 shows the training speed and GPU utilization of

various models with two training configurations (1N1G and

1N4G) when the core number increases. We have two obser-

vations from Fig. 3. The first is that the GPU also achieves

the highest utilization at the maximal training speed. This

observation matches our intuition as GPU computation is the

major step in the training process. The second one is that most

of the models do not gain the best performance with 2-CPU

configuration except Transformer with 1N1G configuration.

The performance gap is in the range of 10% to over 5X. The

requirements of the benchmarks for CPU cores are different.

The existing CPU allocation strategies result in the poor

performance of the DNN training jobs.

IV. ANALYSIS OF CPU REQUIREMENT

In this section, we analyze the CPU-side resource require-

ments of mainstream models. We seek to answer three ques-

tions. (1) What is the best-fit CPU number for different deep

learning GPU models? (2) What are the factors that determine

the CPU demands of one model and how the factors determine

Training

1. Read

2. Pre-process

3. Data transfer

4. Model training

5. Weights update

Epoch 1 Epoch 2
Stage 1 Stage 2 Stage 3

Training

Fig. 4: The CPU-GPU collaborative process.

its demand? (3) Is there any other CPU-side resource that the

performance of GPU jobs is sensitive?

A. CPU-GPU Collaborative Process

Fig. 4 shows the collaborative process of CPU and GPU

when training a DNN model using a single GPU. (1) Read

data from disk into memory. (2) Pre-process raw data to proper

format that can be used by model training. (3) Transfer data

from CPU memory to GPU memory. (4) Compute gradients

using GPU. (5) Update model weights. If multiple GPUs are

used, global synchronization between the GPUs is required

after stage 4. Besides run the five steps in serial, programmers

can parallelize stage 1, or pipeline stage 1 and stage 2 to

further improve the performance.

The specific process steps of training models in different

fields are slightly different. The second step of CV models con-

verts the raw image into the pixel matrix used for training. The

SPEECH models need to do interception and transformation

of audio snippets at the same step, and it takes a longer time

in transformation for a more complex operation. As for NLP

models, since the mainstream datasets are relatively small,

mainstream implementation of NLP models choose to read

the entire dataset into memory which avoid the first step of

the collaborative process. However, NLP jobs also need to do

conversion work on the CPU side, such as converting one word

to a one-hot vector.

B. CPU demands for GPU jobs

In this section, we use the notation of aNbG to represent the

training configuration of using a servers and b GPUs. Fig. 5
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shows the optimal core number for the studied models with

different configurations and batch size(BS).

1) Single-GPU CASE: Observed from Fig. 5, all models

except Alexnet have the same CPU demands in the default

BS configuration and the maximum BS configuration. This is

because the increased BS increases both the data preparation

time and the GPU computing time. When the GPU computing

time is relatively long compared to the data preparation time,

changes in the BS do not affect the computing requirements

of the job for data processing.

For CV jobs, the simpler the network, the more CPUs are

required. While the models with the same BS have the same

data preparation time, more complex networks have longer

GPU computing time. With pipeline optimization, more com-

plex models require fewer CPUs to speed up data preparation

time. For NLP jobs, although they do not need to read the

data into memory, it needs to prepare the vectors required

for training before each iteration. For example, BAT needs to

prepare the context vector and query vector needed for the next

iteration and Transformer needs data preprocessing, batching,

and shuffling. For SPEECH jobs, the data preparation phase

is similar to CV jobs, which require data reading and format

conversion. Besides, Wavenet needs to re-cut the audio during

the data preparation stage, and Deepspeech does not. So

Wavenet needs more CPU cores than Deepspeech.

In single-GPU case, 1) CPU demands of most models are

independent of BS. 2) The CPU demands of the CV models are

mainly related to the model complexity. The higher the model

complexity, the less CPU is required. 3) The CPU demands of

the NLP models are mainly related to the data preprocessing

between iterations. The more related vector calculations, the

more CPU is required. 4) The CPU demands of the SPEECH

models are mainly related to the design of the model. Whether

additional audio processing is required determines the demand

for the CPU.

2) Multi-GPU CASE: In the single-node multi-GPU config-

uration, the model’s CPU demands have a linear relationship

with the number of GPUs it requires. This is because its CPU-

GPU interaction process is similar to the single-node single-

GPU configuration. The impact of local communication on the

overall process is small. The GPU number increase only af-

fects the amount of computation in the data preparation stage,

which results in a linear relationship between the model’s CPU

demands and the number of GPUs in the configuration. For
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Alexnet Vgg16 Inception3 Resnet50 Bi-att-flow TransformerDeepspeech Wavenet
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 '1N2G_Max_BS'
 '1N2G_Default_BS'
 '1N4G_Max_BS'
 '1N4G_Default_BS'
 '2N2G_Max_BS'
 '2N2G_Default_BS'

Fig. 6: The memory bandwidth demand for different bench-

marks with optimal CPU number.

different models, due to the different computing requirements

between iterations, the growth slope of the CPU demands of

different models is different.

Under the multi-node multi-GPU configuration, the exper-

imental configuration is a 10Gb/s Infiniband network inter-

connection. First, it can be seen that the CPU requirements

of all models are no more than two cores. According to

our observations, all models have 25% -30% performance

degradation compared to 1N4G configuration. This is because

the network communication in a multi-node configuration

cannot be optimized. The decreased performance also leads

to jobs consuming more time to prepare the data.

In multi-GPU case, 1) the model’s CPU demand is still

independent of the batch size. The reason is the same as the

single-node single-GPU configuration. 2) if the GPUs are on

the same node, the model’s CPU demand is linearly related

to the GPU number, and the relevant slope is determined by

its data preprocessing requirement. 3) if the GPUs are on

different nodes, the CPU demand of the model is reduced due

to the impact of network communication. The CPU demand

reduction is determined by the model weights and the network

communication speed.

C. Analysis for CPU-side resource contention

The bandwidth usage here refers to the maximum memory

bandwidth used during model training. The corresponding

results are shown in the Fig. 6.

1) Memory bandwidth demand of GPU jobs: First, it is

easy to find that memory bandwidth demand of CV models

have an anti-correlation with its model complexity, which is

consistent with the CV models’ CPU demands. In general,

when a model has lower complexity, it needs more CPU to

complete the data preparation, which also means more need
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Fig. 7: The normalized performance of all the 1N1G models

under contention.

for bandwidth. Note that, when the model adopts a larger

BS, its bandwidth demand increases slightly. Second, For the

NLP model, we can find that the bandwidth requirements of

both NLP models are very small. There are two reasons for

that. One is the small dataset. NLP models choose to read

all the datasets into the memory, avoiding massive memory

access operations between iterations. The other is the NLP

models’ input is pretty small such as the one-hot vector.

Third, for the SPEECH models, we find that its bandwidth

demand is also different due to its different data pre-process

operations. With the BS increasing, the bandwidth requirement

of Wavenet increase accordingly for its need for audio re-cut,

while Deepspeech’s demand does not change. Besides, when

the configuration is increased, the bandwidth requirements of

different models increase linearly, which is consistent with CV

models. For the multi-GPU configuration, as the GPU number

increases, the CV models and SPEECH models’ memory

bandwidth demand increases linearly.

2) Memory bandwidth contention of GPU jobs: To inves-

tigate the sensitivity of a DNN training job on the memory

bandwidth contention, we have chosen a memory-intensive

benchmark HEAT to inflict bandwidth pressure. By adjusting

the thread number of the program, different levels of LLC or

bandwidth pressure is applied to models on the same node.

We only show the experimental results of the 1N1G models

in Figure 7 due to space limitations.

Observed from Fig. 7, all the models are not sensitive to the

LLC contention. Meanwhile, for CV models, only Alexnet is

affected by the memory bandwidth contention, while Vgg16,

Inception3, and Resnet50 are insensitive to the bandwidth

contention. Since these models require less memory bandwidth

and they have longer running time for every iteration, they are

insensitive to the memory bandwidth contention. NLP models

are more sensitive to the memory bandwidth contention. There

have been at least a 50% performance drop, which is consistent

with the analysis of previous sections. While NLP models

all need complex data preprocessing between iterations, they

are sensitive to the resources contention, including memory

bandwidth contention and other contention like bus introduced

by bandwidth contention. For SPEECH models, Deepspeech

is more sensitive than Wavenet, for it needs fewer data

preprocessing between iterations.

In summary, DNN models have different sensitivity to

memory bandwidth contention.

GPU Job

CPU Job

C
luster

CODA Job: Node:

SchedulerAllocator

Predict

Adjust

Eliminator
GPU Job array

CPU Job array

Monitor
GPU Util.

Monitor
Mem. BW

Fig. 8: Design overview of CODA.

3) PCIe bandwidth contention: Our experiment shows that

all models do not consume more than half of the bandwidth of

PCIe 3.0, which is 16GB/s (detailed data is omitted due to the

limited space). In other words, the co-running of two models

do not exceed the total available PCIe bandwidth. As such, it

is safe to co-locate two 1N1G training jobs in a single node

as it does not cause performance degradation for training. As

for the 1N2G case, the noticeable performance drop exists

only when one of the co-located training jobs is Alexnet or

Resnet50. Their maximum PCIe bandwidth consumption is

12 GB/s, with the averaged value of 8 GB/s. In contrast, NLP

and speech models only consume less than 1 GB/s of the PCIe

bandwidth. The difference in the PCIe bandwidth consumption

explains why the CV models can cause large performance

drops when co-located with other models.

Therefore, the selected models in this paper require little

PCIe bandwidth. Unless the complexity of the model is small,

it will demand a considerable amount of PCIe bandwidth.

Based on the contention experimental results, it can be seen

that the co-running of two low demand models does not affect

each other. When co-running with a higher PCIe demand

model, there will be 5%-10% performance degradation.

V. METHODOLOGY OF CODA

In this section, we present CODA, a scheduling system that

improves resource utilization of multi-tenant GPU clusters by

slimming and co-locating DNN training jobs and CPU jobs.

A. Overview

Fig. 8 shows the design overview of CODA that schedules

both CPU jobs and DNN training jobs on a GPU cluster. As

shown in the figure, CODA is comprised of an adaptive CPU
allocator, a real-time contention eliminator, and a multi-array
job scheduler. The CPU allocator identifies the optimal CPU

number for a DNN training job at runtime. The contention

eliminator watches the shared resource contention on each

node. It ensures that the performance of a DNN training job

would not be severely degraded by the contention on CPU-

side shared resources. Based on the data provided by the

CPU allocator, the job scheduler allocates CPU and GPU

resources aiming for high performance. Besides the above

three parts, CODA periodically updates the job information

from all users and array-level job information in the backend.

The information is useful for the CPU allocator and job

scheduler to act efficiently.
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Specifically, CODA schedules a newly received job J as

follows. 1) If J is a DNN training job, the CPU allocator

searches the best CPU number for J based on its category

(Speech, CV, or NLP) and the owner’s historical job informa-

tion recorded in the log. 2) Job J is pushed into either the CPU

job array or GPU job array based on its resource requirement.

3) The job scheduler assigns J the required resources based

on the status of all the nodes in the cluster. 4) The contention

eliminator on each node keeps monitor the memory bandwidth

usage of each job and throttles the memory bandwidth of a

CPU job if it consumes high memory bandwidth. 5) When

J completes, its resource usage, scheduling information, and

owner information are recorded in a log for future use.

Note that, in our current design, the contention eliminator

of CODA only throttles the memory bandwidth usage of CPU

jobs. The main reason for this design is that DNN training jobs

have higher priority than all CPU jobs on GPU clusters except

the user-facing inference jobs. Besides, the DNN training jobs

themselves on the same node would not contend for memory

bandwidth severely, as we showed in Section IV-C.

B. Adaptive CPU allocation

For the DNN training job J , the adaptive CPU allocator

identifies its optimal core number based on two findings in

Sec. III. First, a DNN training job’s GPU utilization rate and

running speed change in a similar trend, and they reach the

optimal value at the same CPU number. Second, there is a

linear relationship between the GPU utilization and the CPU

number allocated to the job.

As shown in Fig. 3, for job J , if the number of its

cores exceeds the optimal number, the corresponding GPU

utilization of J drops slightly. To identify the optimal core

number for J , the CPU allocator first finds a reasonable core

number as the start point Nstart to perform the search. The

start point is determined based on the core number information

of the owner’s historical jobs and the category of J (Speech,

CV, or NLP). The allocator then increases or decreases the

number of cores allocated to J to check whether more or

fewer cores would result in a higher performance of J .

1) Determining Nstart: The CPU allocator determines the

start point to perform the search according to the CPU-GPU

interaction principle. According to the discussion in Sec. IV-A,

the models of the same category have similar CPU-GPU

processing modes. We assume that the tenants provided at least

the categories of their models, and may provide the following

three types of information: the number of model weights,

whether to use pipeline optimization, and data processing

complexity between iterations.

In general, a user tends to submit similar training jobs.

Based on this assumption, Nstart for job J is determined based

on the numbers of cores allocated to its owner’s historical job

in the same category of J . In more detail, we choose the largest

core number to be Nstart. If J is the first job submitted by a

tenant, we choose 3 for CV models, 5 for NLP models, and

5 for SPEECH models empirically based on our investigation

in Sec. IV-B. In the worst case that the owner of J does not

GPU 
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CPU Job array CPU 
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GPU 
resource 
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Fig. 9: The design of the multi-array job scheduling.

even provide the category of J , it is also sufficient to find

a reasonable Nstart based only on the owner’s historical job

execution information.

If the owner of J provides extra information, the Nstart can

be further optimized based on the investigation in Sec. IV-B.

To be more specific, if J is implemented using pipeline

optimization, the corresponding Nstart is reduced by 1. If J
has a large number of job weights, Nstart is reduced by 1.

If the processing complexity between iterations of J is high,

Nstart is increased by 1.

2) Tuning the core number: Starting from Nstart, CODA

tries both larger and smaller core number allocated to J
(denoted by Nopt), and checks whether they speedup J . The

CPU allocator first evaluates the smaller core number for

J . Three cases may happen here. 1) If the GPU utilization

improves, the allocator reduces Nopt until the GPU utilization

does not improve. 2) Otherwise, if the smaller core number

does not improve the GPU utilization, the allocator increases

Nopt in the opposite direction. If larger Nopt improves the

GPU utilization, the allocator keeps increases Nopt until the

GPU utilization does not improve. 3) If the GPU utilization is

not improved with both fewer or more cores, the most suitable

number of cores for J is found. We analyze the effectiveness

and related overhead of the tuning in Sec. VI-F.

C. Multi-array job scheduling

FIFO that gives the highest system-wide throughput and

DRF that enforces fairness between the tenants are the two

most widely-used scheduling algorithms in multi-tenant clus-

ters. However, they result in three critical problems on a GPU

cluster. First, FIFO and DRF may leave GPU jobs pending

when a large number of CPU jobs are in the array. Second,

a tenant that uses GPUs reaches a large weight with DRF,

because GPU in the cluster is more scarce than CPU. The

large weight makes it impossible for the tenant to submit CPU

jobs in a fair time. Third, GPU jobs cannot be submitted if

there are many GPU jobs that apply for one or two GPUs in

the job array. In other words, the cluster has encountered GPU
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fragmentation caused by CPU jobs and GPU jobs, and there

are corresponding fairness issues at the same time.

As shown in Figure 9, the multi-array job scheduler resolves

the three problems by dividing all resources into CPU resource

array and GPU resource array. The GPU resource array

reserves some CPU resources for GPU jobs in this array.

This part of the computing resources is derived from historical

statistical information. For CPU job array, DRF scheduling is

used to schedule the CPU jobs based on the usage of CPU.

For GPU jobs in the GPU job arrays, DRF scheduling is used

to schedule them according to the usage of GPU, and their

CPU numbers are designated by the adaptive CPU allocator.

If CPU jobs burst and the GPU resource array is relatively

idle, the multi-array scheduler allows CPU jobs to preempt

the reserved cores in the GPU resource array (Figure 9).

When a GPU job arrives and needs the preempted CPU cores,

CODA aborts the running CPU job and releases the preempted

CPU cores. The suspended CPU job re-enters the array head,

waiting to be rescheduled again. Benefit from containerization

and virtualization, similar to Container and Kata, job migration

is easy to achieve here.

The GPU job array is further divided into a 4-GPU sub-

array and a 1-GPU sub-array. The 4-GPU sub-array is for jobs

that apply for 4 GPUs or more, while the 1-GPU array serves

jobs that demand less than 4 GPUs. The division of the corre-

sponding array is also determined by the statistical information

of the historical jobs. The maximum GPU number required

by 4-GPU jobs in the historical statistics is designated as the

corresponding initial resource division. When the resources in

the 4-GPU array are all used, the GPU job in the array will

be allocated to the nodes that meet the requirements in the

1-GPU array. If no suitable node is found, the job queues for

scheduling later. Similarly, if all the resources in the 1-GPU

array are used, the job tries to preempt resources from the 4-

GPU job array. When 4-GPU jobs need to use corresponding

resources again, job migration is performed.

The multi-array design eliminates the problems of GPU

fragmentation and the unfair resource usage of the users.

D. Real-time contention elimination

Based on the analysis in Sec. IV-C, DNN training jobs are

sensitive to the contention on memory bandwidth.

In order to guarantee the performance of the high prior-

ity DNN training jobs, CODA monitors the total memory

bandwidth usage of each node and the memory bandwidth

of each CPU job on the node using Intel Memory Bandwidth

Monitoring (MBM) technique. If the total memory bandwidth

usage of the node reaches a pre-defined threshold (75% by

default according to the analysis in Section IV-C) and the

GPU utilization of the DNN training jobs on the node drops,

the performance of the DNN training jobs is degraded due to

the memory bandwidth contention.

In this scenario, the contention eliminator uses the Memory

Bandwidth Allocation (MBA) technique to throttle the mem-

ory bandwidth of CPU jobs. If the node does not support

the MBA technique that only works on the latest CPU, the

contention eliminator reduces the number of cores allocated

to the CPU jobs by half. This method reduces the memory

bandwidth usage of the CPU job and eliminates the perfor-

mance degradation of the DNN training job due to the memory

bandwidth contention. For the released CPU cores, CODA

tries to schedule new CPU jobs and uses the same method

to ensure that the utilization of GPU is not affected.

VI. EVALUATION OF CODA

In this section, we evaluate the performance of CODA in

improving the resource utilization of GPU clusters.

A. Reducing queuing time

We collected the task trajectory information for one month

from the real reproduction cluster. There are 100, 000 jobs are

submitted during the one month, in which 75,000 jobs are CPU

jobs, and 25,000 jobs are DNN training jobs. Most of the GPU

jobs are training NLP and SPEECH models, and there are also

a large number of CPU jobs to complete some auxiliary tasks

and other tasks. The specific experimental configuration has

been explained in the Sec. III, which has 80 nodes and 400

NVIDIA 1080Ti GPUs.

Based on the above real-system traces, we compare CODA

with two widely-used job scheduling algorithms for large-scale

clusters: FIFO (First In First Out) scheduling policy, and DRF

(Dominant Resource Fairness) scheduling policy. With FIFO,

the CPU and GPU jobs are scheduled in the FIFO manner.

With DRF, we consider GPU as the dominant resource and

enforce that the tenants fairly share the dominant resource.

B. Improving resource utilization

Fig. 10 shows the GPU active rate and the GPU utilization

with FIFO, DRF, and CODA. GPU active rate is the percentage

of the overall GPUs that are used, and GPU utilization is

the average resource utilization of each GPU. Higher GPU

active rate means that more GPUs are utilized (shorter queuing

time and lighter fragmentation). Higher GPU utilization means

that each GPU is better utilized in training (higher training

performance).

Observed from Fig. 10, CODA significantly improves the

GPU utilization compared with FIFO and DRF. The GPU

utilization of the cluster with FIFO, DRF, and CODA are

45.4%, 44.7%, and 62.1%, respectively. CODA improves the

GPU utilization of the GPU cluster by 62.1%-45.4%=16.7%.

At the same time, when the jobs queue up for the resource

allocation, the GPU active rates of the cluster with FIFO, DRF,

and CODA are 83.5%, 83.3%, and 91.2%, respectively. This

shows that CODA improves overall GPU utilization.

The improved GPU utilization originates from the adaptive

CPU allocation and real-time contention elimination in CODA.

The adaptive CPU allocator in CODA selects the best-fit CPU

number for each job. It not only avoids the unreasonable CPU

requirement and its induced fragmentation but also optimizes

the performance of the DNN training jobs.

By comparing the GPU active rate curve of CODA with

the GPU active rate curve of FIFO in Fig. 10, we can find
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Fig. 10: The GPU active rate and GPU utilization of the multi-tenant GPU cluster with CODA, FIFO, and RDF.
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Fig. 11: The CDF of the job queu-
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Fig. 12: The 99%-ile queuing time of each user with FIFO, DRF, and CODA.

that CODA reacts to the job change in advance. CODA first

reduces GPU fragmentation to ensure GPU active rate and

reduce task queuing time. Secondly, CODA further reduces

the task queuing time by optimizing the task’s running time,

which also improves the throughput of the cluster.

C. Eliminating GPU fragmentation

GPU fragmentation happens in two cases. In the first case,

GPUs are not used because there is not sufficient CPU for the

DNN training job on the node. In the second case, a node is

not able to host GPU jobs that require four GPUs or more

if other GPUs on the node have already been allocated. We

mainly discuss GPU fragmentation due to insufficient CPU

here, while the second case is solved by the multi-array job

scheduler in CODA.

According to our experimental results, the average fragmen-

tation rate of CODA is less than 1%, while the fragmentation

rate of FIFO and DRF is 14.3% and 14.6%. For FIFO and

DRF, a large number of GPU jobs queue up for scheduling,

while more than 14% of the GPUs are not used.

The advantages of CODA come from two aspects, On the

one hand, it solves the problem of queuing and GPU frag-

mentation caused by tasks that apply for excessive CPU. On

the other hand, the multi-array scheduling module ensures that

GPU tasks are not affected by CPU tasks. Based on these two

advantages, CODA significantly reduces GPU fragmentation

on existing clusters.

Fig. 11 and Fig. 12 show the CDF of the job queuing time

of all the jobs, and the 99%-ile job queuing time of each user

with FIFO, DRF, and CODA. With FIFO and DRF, 43.1%

and 28.9%of GPU jobs suffer from queuing time more than

ten minutes, 27.8% and 14.3% of GPU jobs queue up for more

than an hour. Besides, 87.4% and 87.8% of the CPU jobs can

get resource allocation within 10 seconds. With CODA, 92.1%

of GPU jobs can get resource allocation without queuing, and

94.5% of CPU jobs can be scheduled to the cluster within 3

minutes.

The short queuing time of CODA comes from its CPU

allocation optimization and multi-array scheduling. First, The

CPU allocation optimization solves the problem of excessive

CPU application from GPU jobs, thereby reducing GPU

fragmentation. Second, through the multi-array design, CODA

minimizes the impact of bursty CPU jobs.

Observed from Fig. 12, the queuing time with FIFO for

most users is longer than that with DRF. The root cause is that

DRF aims for fairness, and FIFO aims for higher throughput.

When a small number of users submit a large number of jobs,

FIFO does not take into account the fairness of the users. The

decision causes a large number of users to queue up and have

a longer queuing time. DRF provides better fairness, users

who submit a large number of jobs have longer queuing time,

waiting for tasks of users applied for fewer resources. For

CODA, the queuing time for all users is much shorter than

FIFO and DRF. As described earlier, CODA reduces GPU

fragmentation and improves task performance, which improves

system throughput and optimizes task queuing time. Besides,

CODA also guarantees fairness among users since the DRF

algorithm is used for scheduling inside each array. As can

be seen from the figure, users that submit more tasks have a

longer queuing time.

Note that, when the users that only submit CPU tasks

(id: 15-20) try to submit a large number of CPU tasks, the
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Fig. 13: The end-to-end latencies of representative GPU jobs with FIFO and CODA.
Fig. 14: Tuning the number of

cores allocated to GPU jobs.

corresponding queuing time increase. This is because part of

the CPU resources is reserved for the GPU task array, which

results in a slightly longer queue time for these users. However,

the corresponding queuing time is still not much different from

the DRF, which means it is tolerable.

D. Effectiveness of tuning CPU allocation

Fig. 14 presents the tuning of the core number allocated to

each DNN training job with CODA. As shown in the figure,

57.1% of the GPU jobs are allocated 1-5 more cores, and

33.6% of the GPU jobs are allocated 1-20 fewer cores compare

with the number of cores applied by the job owner. This

is consistent with the investigation in Sec. III: many DNN

training jobs apply for one or two cores for each GPU, and

a considerable percentage of the DNN training jobs request

excessive CPU cores.

Fig. 13 shows the end-to-end latency of representative GPU

jobs (including queuing time and processing time). For each

job, the left bar and right bar represent its queuing time

and processing time with FIFO and CODA, respectively.

Observed from the figure, CODA reduces the queuing time

and processing time of most jobs simultaneously. The queuing

time reduction originates from the improvement of the overall

cluster throughput, and the processing time reduction origi-

nates from the CPU adjustment of the adaptive CPU allocator.

CODA does not reduce or even slightly increase the processing

time of a small number of GPU jobs. This is because when

the processing time is very short, the corresponding benefits

that the adaptive CPU allocation brings is not enough to cover

up the overhead incurred by the module. Since CODA reduces

the corresponding queuing time, the overall end-to-end latency

of the GPU jobs still reduces.

In summary, the adaptive CPU allocation in CODA success-

fully tunes the core number for most DNN training jobs.

E. Effectiveness of eliminating CPU-side contention

The contention eliminator monitors the memory bandwidth

usage of each node in real-time. Each bandwidth-intensive

program was detected, and its bandwidth usage was restricted

accordingly. In order to evaluate the effectiveness of the

contention eliminator in CODA, we disable the eliminator

in CODA and test the performance again. Our experimental

results show that the average GPU utilization decreased by

2.3% when tasks are queuing, if the contention eliminator is

disabled. Meanwhile, the overall number of queueing tasks

doubles.

TABLE II: Overhead of identifying the optimal core number.

Neural model Profiling steps Training iterations
Alexnet [19] 4 about 260
VGG16 [21] 4 about 70

InceptionV3 [22] 3 about 180
Resnet-50 [23] 3 about 150

Bi-att-Flow [24] 4 about 35
Transformer [26] 3 about 260

Wavenet [28] 3 about 28
DeepSpeech [30] 3 about 45

The above performance data is reported in the scenario

that only 0.5% of CPU tasks have high memory bandwidth

requirements. If more CPU jobs on the cluster have higher

memory bandwidth requirements, the performance is worse

without the contention eliminator.

Memory bandwidth-intensive CPU jobs degrade the perfor-

mance of DNN training jobs, without the contention elimina-

tor. First, it affects the GPU utilization on the current node

and the performance of the tasks running on the node. With

the corresponding tasks’ performance degrades, the number of

queueing tasks in the cluster increases. Besides, because the

memory bandwidth contention only affects the performance of

GPU jobs on the current node, It does not affect the overall

scheduling decision, so the corresponding cluster fragmenta-

tion rate does not change.

F. Overhead of identifying the appropriate core number

When identifying the appropriate core number for a DNN

training job, CODA profiles the performance of the job with

different core numbers. During the profiling, we sample the

GPU utilization for each profiling step that lasts 90 seconds.

As shown in Tbl. II, CODA identifies the optimal core number

for all the DNN training jobs in 4 profiling steps, that last for 6

minutes. The table also lists the number of iterations that each

model has been trained during the profiling step. Each model

is trained for 28-260 iterations, which means that it is enough

to discover the CPU requirements of jobs. Besides, we analyze

the runtime distribution of GPU tasks in a week, and find that

39.6% of the DNN training jobs run for more than 2 hours

and 68.5% of the training jobs run for more than an hour. It

is worthwhile to spend about six minutes of exploration time

to find the optimal core number.

G. Generailty

Some larger private clusters maybe composed of both GPU

nodes and CPU nodes. For these more complex clusters,

FIFO scheduling still results in low GPU utilization and GPU
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fragmentation. In addition to these problems, DRF faces new

problems. When GPU resources are more scarce compared to

CPU resources, a tenant that submits both CPU jobs and GPU

jobs can easily reach a large weight. Then its CPU jobs would

no longer be scheduled. This situation conveys unfairness

among users. When GPU resources are sufficient relative

to CPU resources, the weight of GPU becomes irrelevant.

However, the multi-array scheduling in CODA ensures that

the scheduling of GPU and CPU jobs is not affected by each

other.

As for the clusters that have different workload characteris-

tics, CODA also has excellent performance. The current main-

stream private cloud is often adopted to do model training,

which takes more than one hour or two hours. Although this

paper does not cover all the models, GPU utilization represents

the running speed of jobs theoretically. Therefore, CODA

could find the best-fit CPU number of GPU jobs and ensure

that GPU jobs all have the best performance. Further, CODA

improves the throughput and utilization of the cluster, which

means that CODA has good generality.

VII. CONCLUSION AND FUTURE WORK

A multi-tenant GPU cluster hosts both DNN training jobs

and traditional CPU jobs. We first characterize the CPU-side

resource demand and contention of training DNN models in

Speech, CV, and NLP field. Based on the analysis, we propose

CODA, a scheduling system that improves the resource utiliza-

tion of GPU clusters. CODA adopts a feedback-based method

to find the just-enough core number for a DNN training job.

Based on the analysis on the impact of contention on CPU-side

resource on the performance of DNN training jobs, CODA

eliminates the interference which ensures the performance

gains of jobs. A multi-array job scheduler in CODA eliminates

the GPU fragmentation. Experimental results show that CODA

improves the GPU utilization by more than 20.8% without

degrading the performance of GPU jobs.
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